Plant Reactome: a knowledgebase and resource for comparative pathway analysis

Abstract Plant Reactome (https://plantreactome.gramene.org) is an open-source, comparative plant pathway knowledgebase of the Gramene project. It uses Oryza sativa (rice) as a reference species for manual curation of pathways and extends pathway knowledge to another 82 plant species via gene-orthology projection using the Reactome data model and framework. It currently hosts 298 reference pathways, including metabolic and transport pathways, transcriptional networks, hormone signaling pathways, and plant developmental processes. In addition to browsing plant pathways, users can upload and analyze their omics data, such as the gene-expression data, and overlay curated or experimental gene-gene interaction data to extend pathway knowledge. The curation team actively engages researchers and students on gene and pathway curation by offering workshops and online tutorials. The Plant Reactome supports, implements and collaborates with the wider community to make data and tools related to genes, genomes, and pathways Findable, Accessible, Interoperable and Re-usable (FAIR).

[1]  P. León,et al.  Characterization of the Arabidopsis clb6 Mutant Illustrates the Importance of Posttranscriptional Regulation of the Methyl-d-Erythritol 4-Phosphate Pathwayw⃞ , 2005, The Plant Cell Online.

[2]  Minoru Kanehisa,et al.  KEGG Bioinformatics Resource for Plant Genomics and Metabolomics. , 2016, Methods in molecular biology.

[3]  Christoph Steinbeck,et al.  libChEBI: an API for accessing the ChEBI database , 2016, Journal of Cheminformatics.

[4]  E. Marcotte,et al.  Rational association of genes with traits using a genome-scale gene network for Arabidopsis thaliana , 2010, Nature Biotechnology.

[5]  Marie E. Bolger,et al.  MapMan4: A Refined Protein Classification and Annotation Framework Applicable to Multi-Omics Data Analysis. , 2019, Molecular plant.

[6]  Jamie Waese,et al.  The Bio-Analytic Resource for Plant Biology. , 2017, Methods in molecular biology.

[7]  Peter D. Karp,et al.  Pathway Tools version 19.0 update: software for pathway/genome informatics and systems biology , 2016, Briefings Bioinform..

[8]  Robert Petryszak,et al.  Plant Reactome: a resource for plant pathways and comparative analysis , 2016, Nucleic Acids Res..

[9]  G. Friso,et al.  ClpS1 Is a Conserved Substrate Selector for the Chloroplast Clp Protease System in Arabidopsis[C][W] , 2013, Plant Cell.

[10]  Ping Zheng,et al.  15 years of GDR: New data and functionality in the Genome Database for Rosaceae , 2018, Nucleic Acids Res..

[11]  A. Fürholz,et al.  Crosstalk between cytosolic and plastidial pathways of isoprenoid biosynthesis in Arabidopsis thaliana , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[12]  Henning Hermjakob,et al.  Reactome graph database: Efficient access to complex pathway data , 2018, PLoS Comput. Biol..

[13]  Stephen P. Ficklin,et al.  Growing and cultivating the forest genomics database, TreeGenes , 2018, Database J. Biol. Databases Curation.

[14]  Nuno A. Fonseca,et al.  Expression Atlas: gene and protein expression across multiple studies and organisms , 2017, Nucleic Acids Res..

[15]  Rafael C. Jimenez,et al.  The MIntAct project—IntAct as a common curation platform for 11 molecular interaction databases , 2013, Nucleic Acids Res..

[16]  P. Bühlmann,et al.  Sparse graphical Gaussian modeling of the isoprenoid gene network in Arabidopsis thaliana , 2004, Genome Biology.

[17]  Christine G. Elsik,et al.  MaizeGDB 2018: the maize multi-genome genetics and genomics database , 2018, Nucleic Acids Res..

[18]  S. Brunak,et al.  Locating proteins in the cell using TargetP, SignalP and related tools , 2007, Nature Protocols.

[19]  Paul Kersey,et al.  Ensembl Plants: Integrating Tools for Visualizing, Mining, and Analyzing Plant Genomics Data. , 2016, Methods in molecular biology.

[20]  Peter D. Karp,et al.  Pathway Tools version 13.0: integrated software for pathway/genome informatics and systems biology , 2015, Briefings Bioinform..

[21]  Priyanka Garg,et al.  Involving community in genes and pathway curation , 2019, Database.

[22]  Insuk Lee,et al.  AraNet: A Network Biology Server for Arabidopsis thaliana and Other Non-Model Plant Species. , 2017, Methods in molecular biology.

[23]  E. Vranová,et al.  Network analysis of the MVA and MEP pathways for isoprenoid synthesis. , 2013, Annual review of plant biology.

[24]  Thawfeek M. Varusai,et al.  The Reactome Pathway Knowledgebase , 2017, Nucleic acids research.

[25]  Leonore Reiser,et al.  Using the Arabidopsis Information Resource (TAIR) to Find Information About Arabidopsis Genes , 2017, Current protocols in bioinformatics.

[26]  Ana Kozomara,et al.  miRBase: from microRNA sequences to function , 2018, Nucleic Acids Res..

[27]  Dean Ravenscroft,et al.  A genome scale metabolic network for rice and accompanying analysis of tryptophan, auxin and serotonin biosynthesis regulation under biotic stress , 2013, Rice.

[28]  Matthew R. Hanlon,et al.  Araport: the Arabidopsis Information Portal , 2014, Nucleic Acids Res..

[29]  P. Pevzner,et al.  An Eulerian path approach to DNA fragment assembly , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[30]  Eliza M. Baker,et al.  Growing and cultivating the forest genomics database, TreeGenes , 2019, Database : the journal of biological databases and curation.

[31]  K. V. van Wijk,et al.  Organization, function and substrates of the essential Clp protease system in plastids. , 2015, Biochimica et biophysica acta.

[32]  Mari L. Salmi,et al.  Unravelling the regulatory mechanisms that modulate the MEP pathway in higher plants. , 2009, Journal of experimental botany.

[33]  David M. Goodstein,et al.  Phytozome: a comparative platform for green plant genomics , 2011, Nucleic Acids Res..

[34]  Bo Wang,et al.  Gramene 2018: unifying comparative genomics and pathway resources for plant research , 2017, Nucleic Acids Res..

[35]  P Neveu,et al.  Towards an open grapevine information system , 2016, Horticulture Research.

[36]  Stephen P. Ficklin,et al.  AgBioData consortium recommendations for sustainable genomics and genetics databases for agriculture , 2018, Database J. Biol. Databases Curation.

[37]  Steven B Cannon,et al.  Bringing your tools to CyVerse Discovery Environment using Docker , 2016, F1000Research.

[38]  Wei Huang,et al.  Legume information system (LegumeInfo.org): a key component of a set of federated data resources for the legume family , 2015, Nucleic Acids Res..

[39]  Evan Bolton,et al.  PubChem 2019 update: improved access to chemical data , 2018, Nucleic Acids Res..

[40]  P. León,et al.  Plastid Cues Posttranscriptionally Regulate the Accumulation of Key Enzymes of the Methylerythritol Phosphate Pathway in Arabidopsis1 , 2006, Plant Physiology.

[41]  G. Friso,et al.  Discovery of a Unique Clp Component, ClpF, in Chloroplasts: A Proposed Binary ClpF-ClpS1 Adaptor Complex Functions in Substrate Recognition and Delivery[OPEN] , 2015, Plant Cell.

[42]  A. Millar,et al.  Finding the Subcellular Location of Barley, Wheat, Rice and Maize Proteins: The Compendium of Crop Proteins with Annotated Locations (cropPAL). , 2016, Plant & cell physiology.

[43]  Michael Banf,et al.  Genome-Wide Prediction of Metabolic Enzymes, Pathways, and Gene Clusters in Plants1[OPEN] , 2017, Plant Physiology.

[44]  Johannes Goll,et al.  A new reference implementation of the PSICQUIC web service , 2013, Nucleic Acids Res..

[45]  Christoph Steinbeck,et al.  ChEBI in 2016: Improved services and an expanding collection of metabolites , 2015, Nucleic Acids Res..

[46]  S. Ventura,et al.  Specific Hsp100 Chaperones Determine the Fate of the First Enzyme of the Plastidial Isoprenoid Pathway for Either Refolding or Degradation by the Stromal Clp Protease in Arabidopsis , 2016, PLoS genetics.

[47]  Eugene Zhang,et al.  The Planteome database: an integrated resource for reference ontologies, plant genomics and phenomics , 2017, Nucleic Acids Res..

[48]  H. T. Stalker,et al.  Peanuts: genetics, processing, and utilization. , 2016 .

[49]  Yu Zhang,et al.  An Eulerian Path Approach to Global Multiple Alignment for DNA Sequences , 2003, J. Comput. Biol..

[50]  Lukas A. Mueller,et al.  The Sol Genomics Network (SGN)—from genotype to phenotype to breeding , 2014, Nucleic Acids Res..