Kinesins and microtubules: their structures and motor mechanisms.

Atomic resolution three-dimensional structures of two oppositely directed kinesin motors - conventional kinesin and non-claret disjunctional (ncd) protein - are now available in their functional dimeric form. A detailed model of the microtubule has also been recently obtained by docking the 3.7 A structure of tubulin into a 20 A map of the microtubule. Recent structural studies of kinesin motors and their microtubule tracks are contributing to our current understanding of kinesin motor mechanisms.

[1]  Ting Huang,et al.  Formation of the Compact Confomer of Kinesin Requires a COOH-terminal Heavy Chain Domain and Inhibits Microtubule-stimulated ATPase Activity* , 1999, The Journal of Biological Chemistry.

[2]  J Vandekerckhove,et al.  Proteolytic mapping of kinesin/ncd‐microtubule interface: nucleotide‐dependent conformational changes in the loops L8 and L12 , 1998, The EMBO journal.

[3]  M. Schliwa,et al.  Reversal in the direction of movement of a molecular motor , 1997, Nature.

[4]  Release of isolated single kinesin molecules from microtubules. , 1998, Biochemistry.

[5]  I. Rayment,et al.  X-ray crystal structure of the yeast Kar3 motor domain complexed with Mg.ADP to 2.3 A resolution. , 1998, Biochemistry.

[6]  E. Taylor,et al.  Kinetics processivity and the direction of motion of Ncd. , 1999, Biophysical journal.

[7]  Andreas Hoenger,et al.  A Model for the Microtubule-Ncd Motor Protein Complex Obtained by Cryo-Electron Microscopy and Image Analysis , 1997, Cell.

[8]  M. Sheetz,et al.  Motor and cargo interactions. , 1999, European journal of biochemistry.

[9]  F. Kozielski,et al.  The crystal structure of the minus-end-directed microtubule motor protein ncd reveals variable dimer conformations. , 1999, Structure.

[10]  Roger Cooke,et al.  Crystal structure of the motor domain of the kinesin-related motor ncd , 1996, Nature.

[11]  R. Fletterick,et al.  Searching for kinesin's mechanical amplifier. , 2000, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[12]  E. Mandelkow,et al.  Conformations of kinesin: solution vs. crystal structures and interactions with microtubules , 1998, European Biophysics Journal.

[13]  Ronald D. Vale,et al.  Role of the kinesin neck linker and catalytic core in microtubule-based motility , 2000, Current Biology.

[14]  J. Gelles,et al.  One-headed kinesin derivatives move by a nonprocessive, low-duty ratio mechanism unlike that of two-headed kinesin. , 1998, Biochemistry.

[15]  J. Mccammon,et al.  Situs: A package for docking crystal structures into low-resolution maps from electron microscopy. , 1999, Journal of structural biology.

[16]  Timothy J. Mitchison,et al.  Kin I Kinesins Are Microtubule-Destabilizing Enzymes , 1999, Cell.

[17]  E. Mandelkow,et al.  The structural and mechanochemical cycle of kinesin. , 1998, Trends in biochemical sciences.

[18]  R. Vale,et al.  Single-molecule behavior of monomeric and heteromeric kinesins. , 1999, Biochemistry.

[19]  E. Mandelkow,et al.  Structures of kinesin and kinesin-microtubule interactions. , 1999, Current opinion in cell biology.

[20]  E. Taylor,et al.  Kinetic Mechanism of Monomeric Non-claret Disjunctional Protein (Ncd) ATPase* , 1997, The Journal of Biological Chemistry.

[21]  Kenneth H. Downing,et al.  Structure of the αβ tubulin dimer by electron crystallography , 1998, Nature.

[22]  K. Hirose,et al.  Nucleotide-dependent structural changes in dimeric NCD molecules complexed to microtubules. , 1998, Journal of molecular biology.

[23]  E. Mandelkow,et al.  Image Reconstructions of Microtubules Decorated with Monomeric and Dimeric Kinesins: Comparison with X-Ray Structure and Implications for Motility , 1998, The Journal of cell biology.

[24]  R. Cross,et al.  Engineering a Lever into the Kinesin Neck* , 1998, The Journal of Biological Chemistry.

[25]  R. Vale,et al.  The load dependence of kinesin's mechanical cycle. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[26]  N. Hirokawa,et al.  Kinesin and dynein superfamily proteins and the mechanism of organelle transport. , 1998, Science.

[27]  L. Rose,et al.  Movement of motor and cargo along cilia , 1999, Nature.

[28]  S. Endow,et al.  Determinants of kinesin motor polarity. , 1998, Science.

[29]  K. Johnson,et al.  Alternating site mechanism of the kinesin ATPase. , 1998, Biochemistry.

[30]  Mark J. Schnitzer,et al.  Single kinesin molecules studied with a molecular force clamp , 1999, Nature.

[31]  R J Fletterick,et al.  The design plan of kinesin motors. , 1997, Annual review of cell and developmental biology.

[32]  R. Vale,et al.  Switches, latches, and amplifiers: common themes of G proteins and molecular motors , 1996, The Journal of cell biology.

[33]  R. Walker,et al.  Identification of microtubule binding sites in the Ncd tail domain. , 1999, Biochemistry.

[34]  E. Nogales,et al.  Tubulin structure: insights into microtubule properties and functions. , 1998, Current opinion in structural biology.

[35]  Ronald D. Vale,et al.  Direction determination in the minus-end-directed kinesin motor ncd , 1998, Nature.

[36]  R. Wade,et al.  Three-dimensional structure of functional motor proteins on microtubules , 1996, Current Biology.

[37]  Ronald D Vale,et al.  The Directional Preference of Kinesin Motors Is Specified by an Element outside of the Motor Catalytic Domain , 1997, Cell.

[38]  J. Howard,et al.  Kinesin Takes One 8-nm Step for Each ATP That It Hydrolyzes* , 1999, The Journal of Biological Chemistry.

[39]  R. Stewart,et al.  Motility of dimeric ncd on a metal-chelating surfactant: evidence that ncd is not processive. , 1999, Biochemistry.

[40]  Ronald D. Vale,et al.  Crystal structure of the kinesin motor domain reveals a structural similarity to myosin , 1996, Nature.

[41]  J J Correia,et al.  Equilibrium Binding Studies of Non-claret Disjunctional Protein (Ncd) Reveal Cooperative Interactions between the Motor Domains* , 1998, The Journal of Biological Chemistry.

[42]  Jonathon Howard,et al.  Processivity of the Motor Protein Kinesin Requires Two Heads , 1998, The Journal of cell biology.

[43]  E. Mandelkow,et al.  The Crystal Structure of Dimeric Kinesin and Implications for Microtubule-Dependent Motility , 1997, Cell.

[44]  E. Nogales,et al.  Tubulin and FtsZ form a distinct family of GTPases , 1998, Nature Structural Biology.

[45]  N. Hirokawa,et al.  A processive single-headed motor: kinesin superfamily protein KIF1A. , 1999, Science.

[46]  Ronald D. Vale,et al.  Role of the Kinesin Neck Region in Processive Microtubule-based Motility , 1998, The Journal of cell biology.

[47]  K. Hirose,et al.  The structure of microtubule-motor complexes. , 1997, Current opinion in cell biology.

[48]  Ronald D Vale,et al.  Microtubule Interaction Site of the Kinesin Motor , 1997, Cell.

[49]  K. Hirose,et al.  Congruent docking of dimeric kinesin and ncd into three-dimensional electron cryomicroscopy maps of microtubule-motor ADP complexes. , 1999, Molecular biology of the cell.

[50]  Ronald D. Vale,et al.  Single-molecule analysis of kinesin motility reveals regulation by the cargo-binding tail domain , 1999, Nature Cell Biology.

[51]  E. Taylor,et al.  Interacting Head Mechanism of Microtubule-Kinesin ATPase* , 1997, The Journal of Biological Chemistry.

[52]  L. Goldstein,et al.  Bead movement by single kinesin molecules studied with optical tweezers , 1990, Nature.

[53]  K. Johnson,et al.  Pathway of ATP hydrolysis by monomeric and dimeric kinesin. , 1998, Biochemistry.

[54]  E. Mandelkow,et al.  X-ray structure of motor and neck domains from rat brain kinesin. , 1997, Biochemistry.

[55]  L. Goldstein,et al.  The road less traveled: emerging principles of kinesin motor utilization. , 1999, Annual review of cell and developmental biology.

[56]  K. Hirose,et al.  Three-dimensional cryoelectron microscopy of dimeric kinesin and ncd motor domains on microtubules. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[57]  R. Wade,et al.  Nucleotide-dependent conformations of the kinesin dimer interacting with microtubules. , 1998, Structure.

[58]  S. Endow,et al.  Decoupling of nucleotide- and microtubule-binding sites in a kinesin mutant , 1998, Nature.

[59]  R. Hjelm,et al.  Solution structures of dimeric kinesin and ncd motors. , 1999, Biochemistry.

[60]  E. Nogales,et al.  High-Resolution Model of the Microtubule , 1999, Cell.

[61]  Roger Cooke,et al.  A structural change in the kinesin motor protein that drives motility , 1999, Nature.

[62]  W. Jiang,et al.  Monomeric Kinesin Head Domains Hydrolyze Multiple ATP Molecules before Release from a Microtubule* , 1997, The Journal of Biological Chemistry.

[63]  Christoph F. Schmidt,et al.  Direct observation of kinesin stepping by optical trapping interferometry , 1993, Nature.

[64]  J. Howard,et al.  Kinesin’s tail domain is an inhibitory regulator of the motor domain , 1999, Nature Cell Biology.

[65]  Toshio Yanagida,et al.  Direct observation of single kinesin molecules moving along microtubules , 1996, Nature.

[66]  A. Hudspeth,et al.  Movement of microtubules by single kinesin molecules , 1989, Nature.