Open-loop band excitation Kelvin probe force microscopy

A multidimensional scanning probe microscopy approach for quantitative, cross-talk free mapping of surface electrostatic properties is demonstrated. Open-loop band excitation Kelvin probe force microscopy (OL BE KPFM) probes the full response-frequency-potential surface at each pixel at standard imaging rates. The subsequent analysis reconstructs work function, tip-surface capacitance gradient and resonant frequency maps, obviating feedback-related artifacts. OL BE KPFM imaging is demonstrated for several materials systems with topographic, potential and combined contrast. This approach combines the features of both frequency and amplitude KPFM and allows complete decoupling of topographic and voltage contributions to the KPFM signal.

[1]  Sergei V. Kalinin,et al.  Nonlinear transport imaging by scanning impedance microscopy , 2004 .

[2]  Sergei V. Kalinin,et al.  Surface potential at surface-interface junctions in SrTiO 3 bicrystals , 2000 .

[3]  B. Roling,et al.  Characterizing ion dynamics in nanoscopic volumes: time-domain electrostatic force spectroscopy on solid electrolytes , 2009 .

[4]  Electronic transport imaging in a multiwire SnO2 chemical field-effect transistor device , 2005, cond-mat/0506621.

[5]  T. Fukuma,et al.  Quantitative potential measurements of nanoparticles with different surface charges in liquid by open-loop electric potential microscopy , 2011 .

[6]  Vincenzo Palermo,et al.  Electronic Characterization of Organic Thin Films by Kelvin Probe Force Microscopy , 2006 .

[7]  H. K. Wickramasinghe,et al.  Kelvin probe force microscopy , 1991 .

[8]  A. Shluger,et al.  Recent Trends in Surface Characterization and Chemistry with High‐Resolution Scanning Force Methods , 2011, Advanced materials.

[9]  P. Girard,et al.  Measurements of electric potential in a laser diode by Kelvin Probe Force Microscopy , 2000 .

[10]  Yossi Rosenwaks,et al.  Reconstruction of electrostatic force microscopy images , 2005 .

[11]  K. Terabe,et al.  Surface potential imaging of nanoscale LiNbO3 domains investigated by electrostatic force microscopy , 2006 .

[12]  Amit Kumar,et al.  Measuring oxygen reduction/evolution reactions on the nanoscale. , 2011, Nature chemistry.

[13]  Stephen Jesse,et al.  Spatially resolved probing of Preisach density in polycrystalline ferroelectric thin films , 2010 .

[14]  Y. Sugawara,et al.  The Imaging Mechanism of Atomic-scale Kelvin Probe Force Microscopy and its Application to Atomic-Scale Force Mapping , 2003 .

[15]  Stephen Jesse,et al.  Morphology Mapping of Phase-Separated Polymer Films Using Nanothermal Analysis , 2010 .

[16]  Sergei V. Kalinin,et al.  Local potential and polarization screening on ferroelectric surfaces , 2001 .

[17]  Anna N. Morozovska,et al.  Nanoscale Electromechanics of Ferroelectric and Biological Systems: A New Dimension in Scanning Probe Microscopy , 2007 .

[18]  D. F. Ogletree,et al.  Sensing dipole fields at atomic steps with combined scanning tunneling and force microscopy. , 2005, Physical Review Letters.

[19]  V. Palermo,et al.  Nanoscale quantitative measurement of the potential of charged nanostructures by electrostatic and Kelvin probe force microscopy: unraveling electronic processes in complex materials. , 2010, Accounts of chemical research.

[20]  Andreas Stemmer,et al.  Feed-forward compensation of surface potential in atomic force microscopy. , 2008, The Review of scientific instruments.

[21]  P. Jelínek,et al.  New insights on atomic-resolution frequency-modulation Kelvin-probe force-microscopy imaging of semiconductors. , 2009, Physical review letters.

[22]  John H. Davis,et al.  Noncontact scanning probe microscope potentiometry of surface charge patches: Origin and interpretation of time-dependent signals , 1998 .

[23]  A. Volinsky,et al.  Humidity effect on BaTiO3c-domain surface potential inversion induced by electric field , 2011 .

[24]  Il-Doo Kim,et al.  Strong nonlinear current–voltage behaviour in perovskite-derivative calcium copper titanate , 2004, Nature materials.

[25]  V. Podzorov,et al.  Surface Potential Mapping of SAM‐Functionalized Organic Semiconductors by Kelvin Probe Force Microscopy , 2011, Advanced materials.

[26]  Stephen Jesse,et al.  Band excitation in scanning probe microscopy: sines of change , 2011 .

[27]  Y. Martin,et al.  Magnetic imaging by ‘‘force microscopy’’ with 1000 Å resolution , 1987 .

[28]  K. Matsushige,et al.  Local Surface Potential Measurements of Carbon Nanotube FETs by Kelvin Probe Force Microscopy , 2005 .

[29]  E. List,et al.  Note: On the deconvolution of Kelvin probe force microscopy data. , 2010, The Review of scientific instruments.

[30]  Sergei V. Kalinin,et al.  Spatial resolution, information limit, and contrast transfer in piezoresponse force microscopy , 2006, Microscopy and Microanalysis.

[31]  H. Sirringhaus,et al.  Noncontact potentiometry of polymer field-effect transistors , 2002 .

[32]  Amit Kumar,et al.  Nonlinear phenomena in multiferroic nanocapacitors: joule heating and electromechanical effects. , 2011, ACS nano.

[33]  Sergei V. Kalinin,et al.  Resolution theory, and static and frequency-dependent cross-talk in piezoresponse force microscopy , 2010, Nanotechnology.

[34]  A. Stemmer,et al.  Practical aspects of Kelvin probe force microscopy , 1999 .

[35]  M. Fujihira KELVIN PROBE FORCE MICROSCOPY OF MOLECULAR SURFACES , 1999 .

[36]  A. Jäger-Waldau,et al.  High-sensitivity quantitative Kelvin probe microscopy by noncontact ultra-high-vacuum atomic force microscopy , 1999 .

[37]  Dawn A. Bonnell,et al.  Spatially localized dynamic properties of individual interfaces in semiconducting oxides , 2000 .

[38]  D. Ginger,et al.  Electrical Scanning Probe Microscopy on Active Organic Electronic Devices , 2009 .

[39]  F. Prinz,et al.  Reduction and oxidation of oxide ion conductors with conductive atomic force microscopy , 2009, Nanotechnology.

[40]  Sidney R. Cohen,et al.  Simulation and correction of geometric distortions in scanning Kelvin probe microscopy , 2000 .

[41]  N. S. Sariciftci,et al.  Kelvin probe force microscopy study on conjugated polymer/fullerene bulk heterojunction organic solar cells. , 2005, Nano letters.

[42]  L. Eng,et al.  FM demodulated Kelvin probe force microscopy for surface photovoltage tracking , 2005 .

[43]  T. Fukuma,et al.  Nanoscale potential measurements in liquid by frequency modulation atomic force microscopy. , 2010, The Review of scientific instruments.

[44]  Sergei V. Kalinin,et al.  Scanning frequency mixing microscopy of high-frequency transport behavior at electroactive interfaces , 2006 .

[45]  Sergei V. Kalinin,et al.  Screening Phenomena on Oxide Surfaces and Its Implications for Local Electrostatic and Transport Measurements , 2004 .

[46]  Paul L McEuen,et al.  Scanned Probe Imaging of Single-Electron Charge States in Nanotube Quantum Dots , 2002, Science.

[47]  D. F. Marrón,et al.  CuGaSe2 solar cell cross section studied by Kelvin probe force microscopy in ultrahigh vacuum , 2002 .

[48]  Martijn Kemerink,et al.  Real versus measured surface potentials in scanning Kelvin probe microscopy. , 2008, ACS nano.

[49]  Shin-ichi Kitamura,et al.  High-resolution imaging of contact potential difference with ultrahigh vacuum noncontact atomic force microscope , 1998 .

[50]  Sergei V. Kalinin,et al.  Nanoscale mapping of ion diffusion in a lithium-ion battery cathode. , 2010, Nature nanotechnology.

[51]  H. Butt,et al.  Force measurements with the atomic force microscope: Technique, interpretation and applications , 2005 .

[52]  Sergei V. Kalinin,et al.  Scanning impedance microscopy of an active Schottky barrier diode , 2002 .

[53]  M. Lux‐Steiner,et al.  Resolution of Kelvin probe force microscopy in ultrahigh vacuum: comparison of experiment and simulation , 2003 .

[54]  D. Ginger,et al.  Time-resolved electrostatic force microscopy of polymer solar cells , 2006, Nature materials.

[55]  Sergei V. Kalinin,et al.  Domain polarity and temperature induced potential inversion on the BaTiO3(100) surface , 2002 .

[56]  M. Shannon,et al.  ac driving amplitude dependent systematic error in scanning Kelvin probe microscope measurements: Detection and correction , 2006 .

[57]  H. Fuchs,et al.  Time-domain electrostatic force spectroscopy on nanostructured lithium-ion conducting glass ceramics: analysis and interpretation of relaxation times. , 2009, Physical chemistry chemical physics : PCCP.

[58]  Sergei V. Kalinin,et al.  Carbon nanotubes as a tip calibration standard for electrostatic scanning probe microscopies , 2002, cond-mat/0206454.

[59]  A. Stemmer,et al.  Force gradient sensitive detection in lift-mode Kelvin probe force microscopy , 2011, Nanotechnology.

[60]  A. Stemmer,et al.  Compensating electrostatic forces by single-scan Kelvin probe force microscopy , 2007 .

[61]  T. Glatzel,et al.  Analytical Approach to the Local Contact Potential Difference on (001) Ionic Surfaces:~Implications for Kelvin Probe Force Microscopy , 2008, 0807.1431.

[62]  H. Fuchs,et al.  Fast interfacial ionic conduction in nanostructured glass ceramics. , 2007, Physical review letters.

[63]  Anna N. Morozovska,et al.  Resolution-function theory in piezoresponse force microscopy : Wall imaging, spectroscopy, and lateral resolution , 2007 .

[64]  N. Wu,et al.  Direct resistance profile for an electrical pulse induced resistance change device , 2005 .

[65]  Sergei V. Kalinin,et al.  Effect of phase transition on the surface potential of the BaTiO3 (100) surface by variable temperature scanning surface potential microscopy , 2000 .

[66]  David Cahen,et al.  Understanding the Beneficial Role of Grain Boundaries in Polycrystalline Solar Cells from Single‐Grain‐Boundary Scanning Probe Microscopy , 2006 .

[67]  M. Helm,et al.  Quantitative dopant profiling in semiconductors: A Kelvin probe force microscopy model , 2009 .

[68]  Robert M. McMeeking,et al.  The electrical potential difference across cracks in PZT measured by Kelvin Probe Microscopy and the implications for fracture , 2003 .

[69]  Sergei V. Kalinin,et al.  Potential and Impedance Imaging of Polycrystalline BiFeO3 Ceramics , 2004 .

[70]  Sergei V. Kalinin,et al.  Probing the temperature dependence of the mechanical properties of polymers at the nanoscale with band excitation thermal scanning probe microscopy , 2009, Nanotechnology.

[71]  Ricardo Garcia,et al.  Dynamic atomic force microscopy methods , 2002 .

[72]  Andrew C. Kummel,et al.  Kelvin probe force microscopy and its application , 2011 .

[73]  John E. Sader,et al.  Experimental validation of theoretical models for the frequency response of atomic force microscope cantilever beams immersed in fluids , 2000 .

[74]  J. Sader Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope , 1998 .

[75]  O. Vatel,et al.  Kelvin probe force microscopy for characterization of semiconductor devices and processes , 1996 .

[76]  Lukas M. Eng,et al.  Accuracy and resolution limits of Kelvin probe force microscopy , 2005 .

[77]  D. Ginger,et al.  Concerted emission and local potentiometry of light-emitting electrochemical cells. , 2010, ACS nano.

[78]  David L. Carroll,et al.  In-situ measurement of electric fields at individual grain boundaries in TiO2 , 1995 .

[79]  Stephen Jesse,et al.  Local thermomechanical characterization of phase transitions using band excitation atomic force acoustic microscopy with heated probe , 2008 .

[80]  O. Vatel,et al.  Kelvin probe force microscopy for potential distribution measurement of semiconductor devices , 1995 .

[81]  L. Ivleva,et al.  Scanning probe microscopy investigation of ferroelectric properties of barium strontium niobate crystals , 2011 .

[82]  Hiroyuki Sugimura,et al.  Potential shielding by the surface water layer in Kelvin probe force microscopy , 2002 .

[83]  Stephen Jesse,et al.  The band excitation method in scanning probe microscopy for rapid mapping of energy dissipation on the nanoscale , 2007, 0708.4248.

[84]  Stephen Jesse,et al.  Real space mapping of Li-ion transport in amorphous Si anodes with nanometer resolution. , 2010, Nano letters.

[85]  D. Rugar,et al.  Frequency modulation detection using high‐Q cantilevers for enhanced force microscope sensitivity , 1991 .

[86]  Y. Rosenwaks,et al.  Kelvin Probe Force Microscopy of Periodic Ferroelectric Domain Structure in KTiOPO4Crystals , 2002 .

[87]  Sergei V. Kalinin,et al.  Scanning impedance microscopy of electroactive interfaces , 2001 .

[88]  P. Ajayan,et al.  Electrical behavior of isolated multiwall carbon nanotubes characterized by scanning surface potential microscopy , 2002 .

[89]  R. Waser,et al.  Three-Dimensional Electric Field Probing of Ferroelectrics on the Nanometer Scale Using Scanning Force Microscopy , 2001 .

[90]  A. F. Tillack,et al.  Submicrosecond time resolution atomic force microscopy for probing nanoscale dynamics. , 2012, Nano letters.

[91]  D. Ginger,et al.  New SPM techniques for analyzing OPV materials , 2010 .

[92]  Voltage drop in an (AlxGa1−x)0.5In0.5P light-emitting diode probed by Kelvin probe force microscopy , 2006 .