Finite element approximations of the Lamé system with penalized ideal contact boundary conditions
暂无分享,去创建一个
[1] André Garon,et al. Weak imposition of the slip boundary condition on curved boundaries for Stokes flow , 2014, J. Comput. Phys..
[2] R. Verfürth. Finite element approximation on incompressible Navier-Stokes equations with slip boundary condition , 1987 .
[3] P. Knobloch. A finite element convergence analysis for 3D Stokes equations in case of variational crimes , 2000 .
[4] G. Strang,et al. An Analysis of the Finite Element Method , 1974 .
[5] Graham F. Carey,et al. Penalty resolution of the babuska circle paradox , 1983 .
[6] Ibrahima Dione,et al. Stokes equations with penalised slip boundary conditions , 2013 .
[7] John W. Barrett,et al. Finite element approximation of the Dirichlet problem using the boundary penalty method , 1986 .
[8] J. Oden,et al. Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods , 1987 .
[9] Andreas Rössle,et al. Corner Singularities and Regularity of Weak Solutions for the Two-Dimensional Lamé Equations on Domains with Angular Corners , 2000 .
[10] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[11] Graham F. Carey,et al. Boundary penalty techniques , 1982 .
[12] S A Nazarov,et al. PARADOXES OF LIMIT PASSAGE IN SOLUTIONS OF BOUNDARY VALUE PROBLEMS INVOLVING THE APPROXIMATION OF SMOOTH DOMAINS BY POLYGONAL DOMAINS , 1987 .
[13] P. Grisvard. Elliptic Problems in Nonsmooth Domains , 1985 .
[14] S. Nazarov,et al. Approximation of smooth contours by polygonal ones. Paradoxes in problems for the Lame system , 1997 .
[15] R. Verfürth. Finite element approximation of steady Navier-Stokes equations with mixed boundary conditions , 1985 .
[16] Bertrand Maury. Numerical Analysis of a Finite Element/Volume Penalty Method , 2009, SIAM J. Numer. Anal..
[17] K. Deckelnick,et al. Optimal error Estimates for the Stokes and Navier–Stokes equations with slip–boundary condition , 1999 .
[18] Monique Dauge,et al. The Influence of Lateral Boundary Conditions on the Asymptotics in Thin Elastic Plates , 1999, SIAM J. Math. Anal..
[19] Ivo Babuška,et al. Устойчивость областей определения по отношению к основным задачам теории дифференциальных уравнеий в частных производных, главным образом в связи с теорией упругости, I , 1961 .