Finite element approximations of the Lamé system with penalized ideal contact boundary conditions

We consider finite element approximations of the Lame system of elasticity with ideal contact boundary conditions imposed with the penalty method. For a polygonal or polyhedral boundary, we prove convergence estimates in terms of both the penalty and discretization parameters. In the case of a smooth curved boundary we show through a numerical two-dimensional example that convergence may not hold, due to a Babuska's type paradox. We also propose and test numerically several remedies.

[1]  André Garon,et al.  Weak imposition of the slip boundary condition on curved boundaries for Stokes flow , 2014, J. Comput. Phys..

[2]  R. Verfürth Finite element approximation on incompressible Navier-Stokes equations with slip boundary condition , 1987 .

[3]  P. Knobloch A finite element convergence analysis for 3D Stokes equations in case of variational crimes , 2000 .

[4]  G. Strang,et al.  An Analysis of the Finite Element Method , 1974 .

[5]  Graham F. Carey,et al.  Penalty resolution of the babuska circle paradox , 1983 .

[6]  Ibrahima Dione,et al.  Stokes equations with penalised slip boundary conditions , 2013 .

[7]  John W. Barrett,et al.  Finite element approximation of the Dirichlet problem using the boundary penalty method , 1986 .

[8]  J. Oden,et al.  Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods , 1987 .

[9]  Andreas Rössle,et al.  Corner Singularities and Regularity of Weak Solutions for the Two-Dimensional Lamé Equations on Domains with Angular Corners , 2000 .

[10]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[11]  Graham F. Carey,et al.  Boundary penalty techniques , 1982 .

[12]  S A Nazarov,et al.  PARADOXES OF LIMIT PASSAGE IN SOLUTIONS OF BOUNDARY VALUE PROBLEMS INVOLVING THE APPROXIMATION OF SMOOTH DOMAINS BY POLYGONAL DOMAINS , 1987 .

[13]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[14]  S. Nazarov,et al.  Approximation of smooth contours by polygonal ones. Paradoxes in problems for the Lame system , 1997 .

[15]  R. Verfürth Finite element approximation of steady Navier-Stokes equations with mixed boundary conditions , 1985 .

[16]  Bertrand Maury Numerical Analysis of a Finite Element/Volume Penalty Method , 2009, SIAM J. Numer. Anal..

[17]  K. Deckelnick,et al.  Optimal error Estimates for the Stokes and Navier–Stokes equations with slip–boundary condition , 1999 .

[18]  Monique Dauge,et al.  The Influence of Lateral Boundary Conditions on the Asymptotics in Thin Elastic Plates , 1999, SIAM J. Math. Anal..

[19]  Ivo Babuška,et al.  Устойчивость областей определения по отношению к основным задачам теории дифференциальных уравнеий в частных производных, главным образом в связи с теорией упругости, I , 1961 .