Prime number selection of cycles in a predator-prey model

The fact that some species of cicadas appear every 7, 13, or 17 years and that these periods are prime numbers has been regarded as a coincidence. We found a simple evolutionary predator-prey model that yields prime-periodic preys having cycles predominantly around the observed values. An evolutionary game on a spatial array leads to travelling waves reminiscent of those observed in excitable systems. The model marks an encounter of two seemingly unrelated disciplines: biology and number theory. A restriction to the latter, provides an evolutionary generator of arbitrarily large prime numbers. © 2001 John Wiley & Sons, Inc.

[1]  B. Hess,et al.  Isotropic cellular automaton for modelling excitable media , 1990, Nature.

[2]  B Hess,et al.  Phototaxis of Spiral Waves , 1992, Science.

[3]  M. Nowak,et al.  Evolutionary games and spatial chaos , 1992, Nature.

[4]  Paulien Hogeweg,et al.  Spiral wave structure in pre-biotic evolution: hypercycles stable against parasites , 1991 .

[5]  M. Nowak,et al.  A strategy of win-stay, lose-shift that outperforms tit-for-tat in the Prisoner's Dilemma game , 1993, Nature.

[6]  A. Waters Winning ways. , 2002, Nursing standard (Royal College of Nursing (Great Britain) : 1987).

[7]  CHRIS SIMON,et al.  Periodical cicadas , 1989, Nature.

[8]  P. Ribenboim The new book of prime number records , 1996 .

[9]  M. G. Bulmer,et al.  Periodical Insects , 1977, The American Naturalist.

[10]  M. Markus,et al.  Disordered waves in a homogeneous, motionless excitable medium , 1994, Nature.

[11]  C. Carlton,et al.  Paleoclimatic influences in the evolution of periodical cicadas (Insecta : Homoptera : Cicadidae : Magicicada spp.) , 1988 .

[12]  M. Nowak,et al.  THE SPATIAL DILEMMAS OF EVOLUTION , 1993 .

[13]  Jin Yoshimura,et al.  The Evolutionary Origins of Periodical Cicadas During Ice Ages , 1997, The American Naturalist.

[14]  Dennis Saleh Zs , 2001 .

[15]  Michael P. Hassell,et al.  Spatial structure and chaos in insect population dynamics , 1991, Nature.

[16]  J M Smith,et al.  Evolution and the theory of games , 1976 .

[17]  Mario Markus,et al.  Nonlinear wave processes in excitable media , 1991 .

[18]  D. E. Matthews Evolution and the Theory of Games , 1977 .

[19]  R. Cox,et al.  A Commentary on Prime Numbers and Life Cycles of Periodical Cicadas , 1998, The American Naturalist.

[20]  F C Hoppensteadt,et al.  Synchronization of periodical cicada emergences. , 1976, Science.

[21]  N. Rashevsky,et al.  Mathematical biology , 1961, Connecticut medicine.

[22]  Monte Lloyd,et al.  THE PERIODICAL CICADA PROBLEM. II. EVOLUTION , 1966, Evolution; international journal of organic evolution.

[23]  A V Herz,et al.  Collective phenomena in spatially extended evolutionary games. , 1994, Journal of theoretical biology.