Coupled ferroelectric polarization and magnetization in spinel FeCr2S4
暂无分享,去创建一个
Z. R. Yang | S. Dong | J. Wan | L. Lin | J. Liu | K. F. Wang | Z. Yan | Z. B. Yan | J. G. Wan | J.-M. Liu | H. X. Zhu | H. Zhu | L. Lin | X. M. Jiang | S. Dong | X. Jiang
[1] I. Bersuker. Pseudo Jahn-Teller origin of perovskite multiferroics, magnetic-ferroelectric crossover, and magnetoelectric effects: the d0-d10 problem. , 2012, Physical review letters.
[2] G. Shirane,et al. Magnetic Structures in FeCr2S4 and FeCr2O4 , 1964 .
[3] R. Cava,et al. Colossal magnetoresistance in Cr-based chalcogenide spinels , 1997, Nature.
[4] R. Ramesh,et al. Epitaxial BiFeO3 Multiferroic Thin Film Heterostructures , 2003, Science.
[5] L. F. Feiner. Unified description of the cooperative Jahn-Teller effect in FeCr2S4 and the impurity Jahn-Teller effect in CoCr2S4:Fe2+ , 1982 .
[6] S. Cheong,et al. Ferroelectricity in an ising chain magnet. , 2008, Physical review letters.
[7] C. Martin,et al. Giant improper ferroelectricity in the ferroaxial magnet CaMn7O12. , 2011, Physical Review Letters.
[8] Bella Lake,et al. Spin and orbital order in the vanadium spinel MgV 2 O 4 , 2010, 1009.0429.
[9] M. Avdeev,et al. FeCr2S4 in magnetic fields: possible evidence for a multiferroic ground state , 2013, Scientific Reports.
[10] S. Horn,et al. Ultrasonic study of ferrimagnetic FeCr2S4: Evidence for low temperature structural transformations , 2003 .
[11] G. Gehring,et al. Co-operative Jahn-Teller effects , 1975 .
[12] Kresse,et al. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.
[13] Zhaorong Yang,et al. Magnetic anisotropy in colossal magnetoresistive FeCr2S4 single crystals , 2004 .
[14] H. Rietveld. A profile refinement method for nuclear and magnetic structures , 1969 .
[15] I. Bersuker. A Local Approach to Solid State Problems: Pseudo Jahn-Teller origin of Ferroelectricity and Multiferroicity , 2013 .
[16] Zhifeng Ren,et al. Multiferroicity: the coupling between magnetic and polarization orders , 2009, 0908.0662.
[17] R. Tidecks,et al. Low-temperature structural transition inFeCr2S4 , 2004, cond-mat/0406213.
[18] Y. Tokura,et al. Low-Magnetic-Field Control of Electric Polarization Vector in a Helimagnet , 2008, Science.
[19] Blöchl,et al. Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.
[20] S. Horn,et al. Ac susceptibility studies of ferrimagnetic FeCr2S4 single crystals , 2001 .
[21] K. Choi,et al. Anomalous electronic, phonon, and spin excitations in the chalcogenide spinel FeCr2S4 , 2007 .
[22] P. Lunkenheimer,et al. Relaxor ferroelectricity and colossal magnetocapacitive coupling in ferromagnetic CdCr2S4 , 2005, Nature.
[23] Burke,et al. Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.
[24] S. Dong,et al. Experimental observation of ferrielectricity in multiferroic DyMn2O5 , 2013, Scientific reports.
[25] Y. Tokura,et al. Multiferroic M-type hexaferrites with a room-temperature conical state and magnetically controllable spin helicity. , 2010, Physical review letters.
[26] Xiao-yan Yao. Stable and locally stable conditions for a conical spin state in the spinel structure , 2013 .
[27] Y. Tokura,et al. Magnetic control of ferroelectric polarization , 2003, Nature.
[28] C. Martin,et al. Giant Improper Ferroelectricity in the Ferroaxial Magnet CaMn 7 O 12 , 2011, 1110.4585.
[29] A. Loidl,et al. Structural anomalies and the orbital ground state in FeCr 2 S 4 , 2010 .
[30] D. Varjas,et al. Magnetoelasticity in ACr2O4 spinel oxides (A= Mn, Fe, Co, Ni, and Cu) , 2012, 1212.4301.
[31] S. Cheong,et al. Thermally or magnetically induced polarization reversal in the Multiferroic CoCr2O4. , 2009, Physical review letters.
[32] A. P. Ramirez,et al. Magnetoelectric phase diagrams of orthorhombic R MnO 3 ( R = Gd , Tb, and Dy) , 2005 .
[33] A. Loidl,et al. Low temperature incommensurately modulated and noncollinear spin structure in FeCr2S4 , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.
[34] M. Mochizuki,et al. Theory of spin-phonon coupling in multiferroic manganese perovskites R MnO 3 , 2011, 1109.3267.
[35] J. Hemberger,et al. Spin and Orbital Frustration in MnSc~2S~4 and FeSc~2S~4 , 2004 .
[36] Soumyajit Sarkar,et al. Electronic structure of FeCr 2 S 4 : Evidence of Coulomb enhanced spin-orbit splitting , 2009 .
[37] S. Cheong,et al. Multiferroics: a magnetic twist for ferroelectricity. , 2007, Nature materials.
[38] N. Menyuk,et al. Classical Theory of the Ground Spin-State in Cubic Spinels , 1962 .
[39] Y. Tokura,et al. Magnetic reversal of the ferroelectric polarization in a multiferroic spinel oxide. , 2006, Physical review letters.
[40] J. Zaanen,et al. Density-functional theory and strong interactions: Orbital ordering in Mott-Hubbard insulators. , 1995, Physical review. B, Condensed matter.
[41] E. Dagotto,et al. Origin of multiferroic spiral spin order in the RMnO(3) perovskites , 2008, 0807.2395.
[42] J. G. Correia,et al. Dynamic off-centering of Cr3+ ions and short-range magneto-electric clusters in CdCr2S4 , 2012 .
[43] P. Lunkenheimer,et al. Orbital freezing and orbital glass state in FeCr2S4. , 2005, Physical review letters.
[44] Leonardo Lo Presti,et al. Looking for structural phase transitions in the colossal magnetoresistive thiospinel FeCr2S4 by a multi-temperature single-crystal X-ray diffraction study , 2005 .
[45] Y. Tokura,et al. Distorted perovskite witheg1configuration as a frustrated spin system , 2002, cond-mat/0211568.