Coupled ferroelectric polarization and magnetization in spinel FeCr2S4

One of the core issues for multiferroicity is the strongly coupled ferroelectric polarization and magnetization, while so far most multiferroics have antiferromagnetic order with nearly zero magnetization. Magnetic spinel compounds with ferrimagnetic order may be alternative candidates offering large magnetization when ferroelectricity can be activated simultaneously. In this work, we investigate the ferroelectricity and magnetism of spinel FeCr2S4 in which the Fe2+ sublattice and Cr3+ sublattice are coupled in antiparallel alignment. Well defined ferroelectric transitions below the Fe2+ orbital ordering termperature Too = 8.5 K are demonstrated. The ferroelectric polarization has two components. One component arises mainly from the noncollinear conical spin order associated with the spin-orbit coupling, which is thus magnetic field sensitive. The other is probably attributed to the Jahn-Teller distortion induced lattice symmetry breaking, occuring below the orbital ordering of Fe2+. Furthermore, the coupled ferroelectric polarization and magnetization in response to magnetic field are observed. The present work suggests that spinel FeCr2S4 is a multiferroic offering both ferroelectricity and ferrimagnetism with large net magnetization.

[1]  I. Bersuker Pseudo Jahn-Teller origin of perovskite multiferroics, magnetic-ferroelectric crossover, and magnetoelectric effects: the d0-d10 problem. , 2012, Physical review letters.

[2]  G. Shirane,et al.  Magnetic Structures in FeCr2S4 and FeCr2O4 , 1964 .

[3]  R. Cava,et al.  Colossal magnetoresistance in Cr-based chalcogenide spinels , 1997, Nature.

[4]  R. Ramesh,et al.  Epitaxial BiFeO3 Multiferroic Thin Film Heterostructures , 2003, Science.

[5]  L. F. Feiner Unified description of the cooperative Jahn-Teller effect in FeCr2S4 and the impurity Jahn-Teller effect in CoCr2S4:Fe2+ , 1982 .

[6]  S. Cheong,et al.  Ferroelectricity in an ising chain magnet. , 2008, Physical review letters.

[7]  C. Martin,et al.  Giant improper ferroelectricity in the ferroaxial magnet CaMn7O12. , 2011, Physical Review Letters.

[8]  Bella Lake,et al.  Spin and orbital order in the vanadium spinel MgV 2 O 4 , 2010, 1009.0429.

[9]  M. Avdeev,et al.  FeCr2S4 in magnetic fields: possible evidence for a multiferroic ground state , 2013, Scientific Reports.

[10]  S. Horn,et al.  Ultrasonic study of ferrimagnetic FeCr2S4: Evidence for low temperature structural transformations , 2003 .

[11]  G. Gehring,et al.  Co-operative Jahn-Teller effects , 1975 .

[12]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[13]  Zhaorong Yang,et al.  Magnetic anisotropy in colossal magnetoresistive FeCr2S4 single crystals , 2004 .

[14]  H. Rietveld A profile refinement method for nuclear and magnetic structures , 1969 .

[15]  I. Bersuker A Local Approach to Solid State Problems: Pseudo Jahn-Teller origin of Ferroelectricity and Multiferroicity , 2013 .

[16]  Zhifeng Ren,et al.  Multiferroicity: the coupling between magnetic and polarization orders , 2009, 0908.0662.

[17]  R. Tidecks,et al.  Low-temperature structural transition inFeCr2S4 , 2004, cond-mat/0406213.

[18]  Y. Tokura,et al.  Low-Magnetic-Field Control of Electric Polarization Vector in a Helimagnet , 2008, Science.

[19]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[20]  S. Horn,et al.  Ac susceptibility studies of ferrimagnetic FeCr2S4 single crystals , 2001 .

[21]  K. Choi,et al.  Anomalous electronic, phonon, and spin excitations in the chalcogenide spinel FeCr2S4 , 2007 .

[22]  P. Lunkenheimer,et al.  Relaxor ferroelectricity and colossal magnetocapacitive coupling in ferromagnetic CdCr2S4 , 2005, Nature.

[23]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[24]  S. Dong,et al.  Experimental observation of ferrielectricity in multiferroic DyMn2O5 , 2013, Scientific reports.

[25]  Y. Tokura,et al.  Multiferroic M-type hexaferrites with a room-temperature conical state and magnetically controllable spin helicity. , 2010, Physical review letters.

[26]  Xiao-yan Yao Stable and locally stable conditions for a conical spin state in the spinel structure , 2013 .

[27]  Y. Tokura,et al.  Magnetic control of ferroelectric polarization , 2003, Nature.

[28]  C. Martin,et al.  Giant Improper Ferroelectricity in the Ferroaxial Magnet CaMn 7 O 12 , 2011, 1110.4585.

[29]  A. Loidl,et al.  Structural anomalies and the orbital ground state in FeCr 2 S 4 , 2010 .

[30]  D. Varjas,et al.  Magnetoelasticity in ACr2O4 spinel oxides (A= Mn, Fe, Co, Ni, and Cu) , 2012, 1212.4301.

[31]  S. Cheong,et al.  Thermally or magnetically induced polarization reversal in the Multiferroic CoCr2O4. , 2009, Physical review letters.

[32]  A. P. Ramirez,et al.  Magnetoelectric phase diagrams of orthorhombic R MnO 3 ( R = Gd , Tb, and Dy) , 2005 .

[33]  A. Loidl,et al.  Low temperature incommensurately modulated and noncollinear spin structure in FeCr2S4 , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[34]  M. Mochizuki,et al.  Theory of spin-phonon coupling in multiferroic manganese perovskites R MnO 3 , 2011, 1109.3267.

[35]  J. Hemberger,et al.  Spin and Orbital Frustration in MnSc~2S~4 and FeSc~2S~4 , 2004 .

[36]  Soumyajit Sarkar,et al.  Electronic structure of FeCr 2 S 4 : Evidence of Coulomb enhanced spin-orbit splitting , 2009 .

[37]  S. Cheong,et al.  Multiferroics: a magnetic twist for ferroelectricity. , 2007, Nature materials.

[38]  N. Menyuk,et al.  Classical Theory of the Ground Spin-State in Cubic Spinels , 1962 .

[39]  Y. Tokura,et al.  Magnetic reversal of the ferroelectric polarization in a multiferroic spinel oxide. , 2006, Physical review letters.

[40]  J. Zaanen,et al.  Density-functional theory and strong interactions: Orbital ordering in Mott-Hubbard insulators. , 1995, Physical review. B, Condensed matter.

[41]  E. Dagotto,et al.  Origin of multiferroic spiral spin order in the RMnO(3) perovskites , 2008, 0807.2395.

[42]  J. G. Correia,et al.  Dynamic off-centering of Cr3+ ions and short-range magneto-electric clusters in CdCr2S4 , 2012 .

[43]  P. Lunkenheimer,et al.  Orbital freezing and orbital glass state in FeCr2S4. , 2005, Physical review letters.

[44]  Leonardo Lo Presti,et al.  Looking for structural phase transitions in the colossal magnetoresistive thiospinel FeCr2S4 by a multi-temperature single-crystal X-ray diffraction study , 2005 .

[45]  Y. Tokura,et al.  Distorted perovskite witheg1configuration as a frustrated spin system , 2002, cond-mat/0211568.