A study of the interplay between ionized gas and star clusters in the central region of NGC 5253 with 2D spectroscopy

Context. Starbursts are one of the main contributors to the chemical enrichment of the interstellar medium. However, mechanisms governing the interaction between the recent star formation and the surrounding gas are not fully understood. Because of their a priori simplicity, the subgroup of H ii galaxies constitute an ideal sample to study these mechanisms. Aims. A detailed 2D study of the central region of NGC 5253 has been performed to characterize the stellar and ionized gas structure as well as the extinction distribution, physical properties and kinematics of the ionized gas in the central ∼210 pc × 130 pc. Methods. We utilized optical integral field spectroscopy (IFS) data obtained with FLAMES. Results. A detailed extinction map for the ionized gas in NGC 5253 shows that the largest extinction is associated with the prominent Giant H ii region. There is an offset of ∼0. �� 5 between the peak of the optical continuum and the extinction peak in agreement with findings in the infrared. We found that stars suffer less extinction than gas by a factor of ∼0.33. The [S ii]λ6717/[S ii]λ6731 map shows an electron density (Ne) gradient declining from the peak of emission in Hα (790 cm −3 ) outwards, while the argon line ratio traces areas with Ne ∼ 4200−6200 cm −3 . The area polluted with extra nitrogen, as deduced from the excess [N ii]λ6584/Hα, extends up to distances of 3. �� 3( ∼60 pc) from the maximum pollution, which is offset by ∼1. �� 5 from the peak of continuum emission. Wolf-Rayet features are distributed in an irregular pattern over a larger area (∼100 pc × 100 pc) and associated with young stellar clusters. We measured He + abundances over most of the field of view and values of He ++ /H + < 0.0005 in localized areas which do not coincide, in general, with the areas presenting W-R emission or extra nitrogen. The line profiles are complex. Up to three emission components were needed to reproduce them. One of them, associated with the giant H ii region, presents supersonic widths and [N ii]λ6584 and [S ii]λλ6717,6731 emission lines shifted up to 40 km s −1 with respect to Hα. Similarly, one of the narrow components presents offsets in the [N ii]λ6584 line of <20 km s −1 . This is the first time that maps with such velocity offsets for a starburst galaxy have been presented. The observables in the giant H ii region fit with a scenario where the two super stellar clusters (SSCs) produce an outflow that encounters the previously quiescent gas. The south-west part of the FLAMES IFU field is consistent with a more evolved stage where the star clusters have already cleared out their local environment.

[1]  M. Westmoquette,et al.  Gemini GMOS/IFU spectroscopy of NGC 1569 - II: Mapping the roots of the galactic outflow , 2007, 0708.2682.

[2]  P. Ho,et al.  The Radio Supernebula in NGC 5253 , 2000, The Astrophysical journal.

[3]  G. Ferland,et al.  Self-Consistent Dynamic Models of Steady Ionization Fronts. I. Weak-D and Weak-R Fronts , 2005, astro-ph/0501034.

[4]  Semi‐empirical analysis of Sloan Digital Sky Survey galaxies – III. How to distinguish AGN hosts , 2006, astro-ph/0606724.

[5]  Denis Foo Kune,et al.  Starburst99: Synthesis Models for Galaxies with Active Star Formation , 1999, astro-ph/9902334.

[6]  J. Baldwin,et al.  ERRATUM - CLASSIFICATION PARAMETERS FOR THE EMISSION-LINE SPECTRA OF EXTRAGALACTIC OBJECTS , 1981 .

[7]  J. Iglesias-Páramo,et al.  Bidimensional Spectroscopic Mapping and Chemical Abundances of the Star-forming Dwarf Galaxy I Zw 18 , 1998 .

[8]  The impact of star formation on the interstellar medium in dwarf galaxies , 1998, astro-ph/9804165.

[9]  The star cluster population of NGC 5253 , 2004, astro-ph/0411486.

[10]  The Host Galaxies of AGN , 2003, astro-ph/0304239.

[11]  R. Terlevich,et al.  Violent star formation in NGC 2363 , 1994 .

[12]  D. Osterbrock,et al.  Astrophysics of Gaseous Nebulae and Active Galactic Nuclei , 1989 .

[13]  S. Sakai,et al.  The Hubble Flow around the Centaurus A/M83 Galaxy Complex , 2006, astro-ph/0603091.

[14]  Daniela Calzetti,et al.  The Ionized Gas in Local Starburst Galaxies: Global and Small-Scale Feedback from Star Formation , 2003, astro-ph/0312385.

[15]  R. Blomme,et al.  Line formation in solar granulation VI. [Cl], Cl, CH and C2 lines and the photospheric C abundance , 2004, astro-ph/0410681.

[16]  D. Kiselman,et al.  Line formation in solar granulation IV. (O I), O I and OH lines and the photospheric O abundance , 2003, astro-ph/0312290.

[17]  A. Kinney,et al.  Dust extinction of the stellar continua in starburst galaxies: The Ultraviolet and optical extinction law , 1994 .

[18]  R. Shaw,et al.  SOFTWARE FOR THE ANALYSIS OF EMISSION LINE NEBULAE , 1995 .

[19]  B. Melekh,et al.  The chemical composition of HII regions in blue compact dwarf galaxies , 2002 .

[20]  VLT/GIRAFFE spectroscopic observations of the metal-poor blue compact dwarf galaxy SBS 0335–052E , 2006, astro-ph/0608203.

[21]  J. Walsh,et al.  Hubble Space Telescope Faint Object Spectroscope Spectroscopy of Localized Chemical Enrichment from Massive Stars in NGC 5253 , 1997 .

[22]  C. Esteban,et al.  Optical Recombination Lines of Heavy Elements in Giant Extragalactic H II Regions , 2002, astro-ph/0208313.

[23]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[24]  Luis Colina,et al.  PMAS optical integral field spectroscopy of luminous infrared galaxies - I. The atlas , 2009, 0907.5105.

[26]  M. Barlow,et al.  A deep survey of heavy element lines in planetary nebulae – I. Observations and forbidden-line densities, temperatures and abundances , 2003, astro-ph/0305469.

[27]  R. Terlevich,et al.  The stellar populations and evolution of H II galaxies - I. High signal-to-noise optical spectroscopy. , 1986 .

[28]  J. Walsh,et al.  A VLT VIMOS study of the anomalous BCD Mrk 996: mapping the ionized gas kinematics and abundances , 2009, 0903.2280.

[29]  D. Schaerer,et al.  New catalogue of Wolf-Rayet galaxies and high-excitation extra-galactic HII regions , 1998, astro-ph/9812347.

[30]  L. Kewley,et al.  The MAPPINGS III Library of Fast Radiative Shock Models , 2008, 0805.0204.

[31]  J. Surace,et al.  The IRAS Revised Bright Galaxy Sample , 2003, astro-ph/0306263.

[32]  T. Heckman,et al.  Chandra and XMM–Newton observations of NGC 5253: analysis of the X-ray emission from a dwarf starburst galaxy , 2004, astro-ph/0403669.

[33]  Multiple superbubbles in the starburst nucleus of NGC 5253? Implications for mass loss from dwarf galaxies , 1999, astro-ph/9902188.

[34]  R. Kennicutt A spectrophotometric atlas of galaxies , 1992 .

[35]  H. Kobulnicky,et al.  INFLOWS AND OUTFLOWS IN THE DWARF STARBURST GALAXY NGC 5253: HIGH-RESOLUTION H i OBSERVATIONS , 2007, 0711.2688.

[36]  J. Melnick,et al.  Breakout: The Origin of Faint Extended Broad Emission Lines Associated with Giant Extragalactic H II Regions , 1997 .

[37]  L. M. Cairós,et al.  Accepted for publication in The Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 03/07/07 INTEGRAL FIELD SPECTROSCOPY OF BLUE COMPACT DWARF GALAXIES , 2022 .

[38]  et al,et al.  The 1000 Brightest HIPASS Galaxies: H I Properties , 2004, astro-ph/0404436.

[39]  Timothy M. Heckman,et al.  The host galaxies of active galactic nuclei , 2003 .

[40]  Cambridge,et al.  THE OPTICAL STRUCTURE OF THE STARBURST GALAXY M82. II. NEBULAR PROPERTIES OF THE DISK AND INNER WIND , 2009, 0907.3162.

[41]  T. Contini,et al.  The impact of the nitrogen-to-oxygen ratio on ionized nebula diagnostics based on [N ii] emission lines , 2009, 0905.4621.

[42]  C. Leitherer,et al.  From Luminous Hot Stars to Starburst Galaxies , 2008 .

[43]  D. Calzetti,et al.  THE RECENT CLUSTER FORMATION HISTORIES OF NGC 5253 AND NGC 3077: ENVIRONMENTAL IMPACT ON STAR FORMATION , 2003, astro-ph/0311485.

[44]  G. Rieke,et al.  The interstellar extinction law from 1 to 13 microns. , 1985 .

[45]  Henry A. Kobulnicky,et al.  Electronic Mail: , 1998 .

[46]  H. Plana,et al.  THE INTERNAL KINEMATICS OF THE H ii GALAXY II Zw 40 , 2009, 0902.2716.

[47]  G. Haro Preliminary note on blue galaxies with nuclear emission. , 1956 .

[48]  C. Pritchet,et al.  Near-Infrared [Fe II] Emission in Starburst Galaxies. I. Measured Properties , 2006 .

[49]  Donald E. Osterbrock,et al.  Spectral Classification of Emission-Line Galaxies , 1987 .

[50]  R. Terlevich,et al.  The Primordial helium abundance from observations of extragalactic H-II regions , 1992 .

[51]  Harvard-Smithsonian CfA,et al.  Using Strong Lines to Estimate Abundances in Extragalactic H II Regions and Starburst Galaxies , 2002, astro-ph/0206495.

[52]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[53]  Astronomy,et al.  A Reexamination of Electron Density Diagnostics for Ionized Gaseous Nebulae , 2004, astro-ph/0408040.

[54]  O. Nacional,et al.  The interplay between ionized gas and massive stars in the HII galaxy IIZw70: integral field spectroscopy with PMAS , 2007, 0710.5732.

[55]  Laura Ferrarese,et al.  The Effect of Metallicity on Cepheid-based Distances , 2004, astro-ph/0402499.

[56]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[57]  L. Kewley,et al.  Theoretical Modeling of Starburst Galaxies , 2001, astro-ph/0106324.

[58]  R. Kennicutt,et al.  Soft X-Ray Emission from NGC 5253 and the Ionized Interstellar Medium , 1995 .

[59]  Urbana,et al.  An extragalactic supernebula confined by gravity , 2003, Nature.

[60]  G. Rieke,et al.  Obscured Star Formation in the Central Region of the Dwarf Galaxy NGC 5253 , 2004, astro-ph/0405093.

[61]  Velocity Structure in the Orion Nebula: II. Emission line atlas of partially ionized to fully ionized gas , 2008, 0802.0518.

[62]  H Germany,et al.  PMAS optical integral field spectroscopy of luminous infrared galaxies - II. Spatially resolved stellar populations and excitation conditions, , 2010, 1006.2219.

[63]  D. Schaerer About the Initial Mass Function and He II Emission in Young Starbursts , 1996, astro-ph/9606042.

[64]  Iap,et al.  Galaxies with Wolf-Rayet signatures in the low-redshift Universe. A survey using the Sloan Digital Sky Survey , 2008, 0805.1073.

[65]  E. Carrasco,et al.  ON THE COMPACT H ii GALAXY UM 408 AS SEEN BY GMOS–IFU: PHYSICAL CONDITIONS , 2009, 0904.1966.

[66]  S. Bergh THE POSTERUPTIVE GALAXY NGC 5253. , 1980 .

[67]  G. Meynet,et al.  Detection of Wolf-Rayet Stars of WN and WC Subtypes in Super-Star Clusters of NGC 5253 , 1997, astro-ph/9703087.

[68]  G. Östlin,et al.  The most metal-poor galaxies , 1999, astro-ph/9911094.

[69]  Dust and Recent Star Formation in the Core of NGC5253 , 1997, astro-ph/9708056.

[70]  Á. López-Sánchez,et al.  The Localized Chemical Pollution in NGC 5253 Revisited: Results from Deep Echelle Spectrophotometry , 2006, astro-ph/0609498.

[71]  Joseph L. Hora,et al.  Investigating the Near-Infrared Properties of Planetary Nebulae II. Mediur/i Resolution Spectra , 2000 .

[72]  Mitchell C. Begelman,et al.  Turbulent mixing layers in the interstellar medium of galaxies , 1993 .

[73]  L. Kewley,et al.  Modeling the Pan-Spectral Energy Distribution of Starburst Galaxies. III. Emission Line Diagnostics of Ensembles of Evolving H II Regions , 2006, astro-ph/0608062.

[74]  J. Walsh,et al.  Optical spectroscopic and abundance mapping of the amorphous galaxy NGC 5253 , 1989 .

[75]  Robert C. Kennicutt,et al.  He II emission in extragalactic H II regions , 1991 .

[76]  High spatial resolution mid-infrared spectroscopy of NGC 5253: The stellar content of the embedded super-star cluster , 2004, astro-ph/0408582.