Magnetically Induced Current Piston for Generating Extreme-ultraviolet Fronts in the Solar Corona
暂无分享,去创建一个
[1] Hui Li,et al. Reverse Current Model for Coronal Mass Ejection Cavity Formation , 2018, The Astrophysical Journal.
[2] P. Bourdin. Plasma Beta Stratification in the Solar Atmosphere: A Possible Explanation for the Penumbra Formation , 2017, 1711.10965.
[3] Shengtai Li,et al. Apex Dips of Experimental Flux Ropes: Helix or Cusp? , 2017 .
[4] D. S. Bloomfield,et al. Understanding the Physical Nature of Coronal “EIT Waves” , 2016, Solar physics.
[5] P. Bellan,et al. Laboratory demonstration of slow rise to fast acceleration of arched magnetic flux ropes , 2016 .
[6] E. Kontar,et al. CORONAL RESPONSE TO AN EUV WAVE FROM DEM ANALYSIS , 2015, 1509.05269.
[7] P. Gallagher,et al. THE ENERGETICS OF A GLOBAL SHOCK WAVE IN THE LOW SOLAR CORONA , 2014, 1412.2964.
[8] M. Temmer,et al. Statistical Analysis of Large-Scale EUV Waves Observed by STEREO/EUVI , 2014, 1408.2513.
[9] Shengtai Li,et al. THREE-DIMENSIONAL MHD SIMULATION OF THE CALTECH PLASMA JET EXPERIMENT: FIRST RESULTS , 2014, 1407.3498.
[10] Jason P. Byrne,et al. Quasiperiodic acceleration of electrons by a plasmoid-driven shock in the solar atmosphere , 2013, Nature Physics.
[11] P. Bellan,et al. Magnetically driven flows in arched plasma structures. , 2012, Physical review letters.
[12] O. Olmedo,et al. SECONDARY WAVES AND/OR THE “REFLECTION” FROM AND “TRANSMISSION” THROUGH A CORONAL HOLE OF AN EXTREME ULTRAVIOLET WAVE ASSOCIATED WITH THE 2011 FEBRUARY 15 X2.2 FLARE OBSERVED WITH SDO/AIA AND STEREO/EUVI , 2012, 1206.6137.
[13] X. Cheng,et al. INVESTIGATION OF THE FORMATION AND SEPARATION OF AN EXTREME-ULTRAVIOLET WAVE FROM THE EXPANSION OF A CORONAL MASS EJECTION , 2011, 1112.4540.
[14] M. Temmer,et al. ANALYSIS OF CHARACTERISTIC PARAMETERS OF LARGE-SCALE CORONAL WAVES OBSERVED BY THE SOLAR-TERRESTRIAL RELATIONS OBSERVATORY/EXTREME ULTRAVIOLET IMAGER , 2011 .
[15] Carolus J. Schrijver,et al. THE 2011 FEBRUARY 15 X2 FLARE, RIBBONS, CORONAL FRONT, AND MASS EJECTION: INTERPRETING THE THREE-DIMENSIONAL VIEWS FROM THE SOLAR DYNAMICS OBSERVATORY AND STEREO GUIDED BY MAGNETOHYDRODYNAMIC FLUX-ROPE MODELING , 2011 .
[16] L. Golub,et al. OBSERVATIONS AND INTERPRETATION OF A LOW CORONAL SHOCK WAVE OBSERVED IN THE EUV BY THE SDO/AIA , 2011, 1106.6056.
[17] A. Zhukov. EIT wave observations and modeling in the STEREO era , 2011 .
[18] Nathan A. Schwadron,et al. OFF-LIMB SOLAR CORONAL WAVEFRONTS FROM SDO/AIA EXTREME-ULTRAVIOLET OBSERVATIONS—IMPLICATIONS FOR PARTICLE PRODUCTION , 2011, 1406.2372.
[19] P. Chen,et al. FIRST EVIDENCE OF COEXISTING EIT WAVE AND CORONAL MORETON WAVE FROM SDO/AIA OBSERVATIONS , 2011, 1103.0871.
[20] N. Lugaz,et al. STUDYING EXTREME ULTRAVIOLET WAVE TRANSIENTS WITH A DIGITAL LABORATORY: DIRECT COMPARISON OF EXTREME ULTRAVIOLET WAVE OBSERVATIONS TO GLOBAL MAGNETOHYDRODYNAMIC SIMULATIONS , 2011 .
[21] C. Schrijver,et al. FIRST SDO AIA OBSERVATIONS OF A GLOBAL CORONAL EUV “WAVE”: MULTIPLE COMPONENTS AND “RIPPLES” , 2010, 1201.0815.
[22] G. Attrill,et al. EIT Waves: A Changing Understanding over a Solar Cycle , 2009 .
[23] G. Attrill,et al. NUMERICAL SIMULATION OF AN EUV CORONAL WAVE BASED ON THE 2009 FEBRUARY 13 CME EVENT OBSERVED BY STEREO , 2009, 0909.3095.
[24] B. Thompson,et al. A CATALOG OF CORONAL “EIT WAVE” TRANSIENTS , 2009 .
[25] A. Vourlidas,et al. “EXTREME ULTRAVIOLET WAVES” ARE WAVES: FIRST QUADRATURE OBSERVATIONS OF AN EXTREME ULTRAVIOLET WAVE FROM STEREO , 2009, 0905.2164.
[26] E. Cliver,et al. Origin of Coronal Shock Waves , 2008 .
[27] M. Temmer,et al. High-Cadence Observations of a Global Coronal Wave by STEREO EUVI , 2008, 0806.0710.
[28] D. S. Bloomfield,et al. The Kinematics of a Globally Propagating Disturbance in the Solar Corona , 2008, 0805.2023.
[29] M. Temmer,et al. Cylindrical and Spherical Pistons as Drivers of MHD Shocks , 2008 .
[30] G. Aulanier,et al. A New Model for Propagating Parts of EIT Waves: A Current Shell in a CME , 2008 .
[31] J. Stenflo,et al. Are “EIT Waves” Fast-Mode MHD Waves? , 2007, 0704.2828.
[32] L. Driel-Gesztelyi,et al. Coronal “Wave”: Magnetic Footprint of a Coronal Mass Ejection? , 2007 .
[33] A. Vourlidas,et al. The Flux-Rope Scaling of the Acceleration of Coronal Mass Ejections and Eruptive Prominences , 2006 .
[34] A. Warmuth,et al. First Soft X-Ray Observations of Global Coronal Waves with the GOES Solar X-Ray Imager , 2005 .
[35] P. MacNeice,et al. Observable Properties of the Breakout Model for Coronal Mass Ejections , 2004 .
[36] J. Terradas,et al. Loop Density Enhancement by Nonlinear Magnetohydrodynamic Waves , 2004 .
[37] A. Warmuth,et al. A multiwavelength study of solar flare waves II. Perturbation characteristics and physical interpretation , 2004 .
[38] L. Harra,et al. Imaging and Spectroscopic Investigations of a Solar Coronal Wave: Properties of the Wave Front and Associated Erupting Material , 2003 .
[39] S. Wu,et al. Evidence of EIT and Moreton Waves in Numerical Simulations , 2002 .
[40] A. Vourlidas,et al. Solar Phenomena Associated with “EIT Waves” , 2002 .
[41] P. Bellan,et al. Three-dimensional Model of the Structure and Evolution of Coronal Mass Ejections , 2002 .
[42] Barbara J. Thompson,et al. Interaction of EIT Waves with Coronal Active Regions , 2001 .
[43] G. A. Gary,et al. Plasma Beta above a Solar Active Region: Rethinking the Paradigm , 2001 .
[44] N. Gopalswamy,et al. Early life of coronal mass ejections , 2000 .
[45] R. P. Drake,et al. Criteria for Scaled Laboratory Simulations of Astrophysical MHD Phenomena , 2000 .
[46] Andreas Klassen,et al. Catalogue of the 1997 SOHO–EIT coronal transient waves and associated type II radio burst spectra , 2000 .
[47] B. Vršnak,et al. Formation Of Coronal Mhd Shock Waves – I. The Basic Mechanism , 2000 .
[48] J. B. Gurman,et al. SOHO/EIT observations of an Earth‐directed coronal mass ejection on May 12, 1997 , 1998 .
[49] G. Mann. Simple magnetohydrodynamic waves , 1995, Journal of Plasma Physics.
[50] C. Goertz. Plasma physics. , 1982, Science.
[51] J. Cole,et al. On cylindrical magnetohydrodynamic shock waves , 1961 .