Magnetically Induced Current Piston for Generating Extreme-ultraviolet Fronts in the Solar Corona

Single-pulse, globally propagating coronal fronts, called Extreme-ultraviolet (EUV) waves, were first observed in 1995 by the Extreme-ultraviolet Imaging Telescope and every observed EUV wave since has been associated with a coronal mass ejection (CME). The physical mechanism underlying these waves has been debated for two decades with wave or pseudo-wave theories being advocated. We propose a hybrid model where EUV waves are compressional fronts driven by a reverse electric current layer induced by the time-dependent CME core current. The reverse current layer flows in a direction opposite to the CME core current and is an eddy current layer necessary to maintain magnetic flux conservation above the layer. Repelled by the core current, the reverse current layer accelerates upward so it acts as a piston that drives a compressional perturbation in the coronal regions above. Given a sufficiently fast piston speed, the compressional perturbation becomes a shock that separates from the piston when the piston slows down. Since the model relates the motion of the EUV front to CME properties, the model provides a bound for the core current of an erupting CME. The model is supported and motivated by detailed results from both laboratory experiments and ideal 3D magnetohydrodynamic simulations. Overlaps and differences with other models and spacecraft observations are discussed.

[1]  Hui Li,et al.  Reverse Current Model for Coronal Mass Ejection Cavity Formation , 2018, The Astrophysical Journal.

[2]  P. Bourdin Plasma Beta Stratification in the Solar Atmosphere: A Possible Explanation for the Penumbra Formation , 2017, 1711.10965.

[3]  Shengtai Li,et al.  Apex Dips of Experimental Flux Ropes: Helix or Cusp? , 2017 .

[4]  D. S. Bloomfield,et al.  Understanding the Physical Nature of Coronal “EIT Waves” , 2016, Solar physics.

[5]  P. Bellan,et al.  Laboratory demonstration of slow rise to fast acceleration of arched magnetic flux ropes , 2016 .

[6]  E. Kontar,et al.  CORONAL RESPONSE TO AN EUV WAVE FROM DEM ANALYSIS , 2015, 1509.05269.

[7]  P. Gallagher,et al.  THE ENERGETICS OF A GLOBAL SHOCK WAVE IN THE LOW SOLAR CORONA , 2014, 1412.2964.

[8]  M. Temmer,et al.  Statistical Analysis of Large-Scale EUV Waves Observed by STEREO/EUVI , 2014, 1408.2513.

[9]  Shengtai Li,et al.  THREE-DIMENSIONAL MHD SIMULATION OF THE CALTECH PLASMA JET EXPERIMENT: FIRST RESULTS , 2014, 1407.3498.

[10]  Jason P. Byrne,et al.  Quasiperiodic acceleration of electrons by a plasmoid-driven shock in the solar atmosphere , 2013, Nature Physics.

[11]  P. Bellan,et al.  Magnetically driven flows in arched plasma structures. , 2012, Physical review letters.

[12]  O. Olmedo,et al.  SECONDARY WAVES AND/OR THE “REFLECTION” FROM AND “TRANSMISSION” THROUGH A CORONAL HOLE OF AN EXTREME ULTRAVIOLET WAVE ASSOCIATED WITH THE 2011 FEBRUARY 15 X2.2 FLARE OBSERVED WITH SDO/AIA AND STEREO/EUVI , 2012, 1206.6137.

[13]  X. Cheng,et al.  INVESTIGATION OF THE FORMATION AND SEPARATION OF AN EXTREME-ULTRAVIOLET WAVE FROM THE EXPANSION OF A CORONAL MASS EJECTION , 2011, 1112.4540.

[14]  M. Temmer,et al.  ANALYSIS OF CHARACTERISTIC PARAMETERS OF LARGE-SCALE CORONAL WAVES OBSERVED BY THE SOLAR-TERRESTRIAL RELATIONS OBSERVATORY/EXTREME ULTRAVIOLET IMAGER , 2011 .

[15]  Carolus J. Schrijver,et al.  THE 2011 FEBRUARY 15 X2 FLARE, RIBBONS, CORONAL FRONT, AND MASS EJECTION: INTERPRETING THE THREE-DIMENSIONAL VIEWS FROM THE SOLAR DYNAMICS OBSERVATORY AND STEREO GUIDED BY MAGNETOHYDRODYNAMIC FLUX-ROPE MODELING , 2011 .

[16]  L. Golub,et al.  OBSERVATIONS AND INTERPRETATION OF A LOW CORONAL SHOCK WAVE OBSERVED IN THE EUV BY THE SDO/AIA , 2011, 1106.6056.

[17]  A. Zhukov EIT wave observations and modeling in the STEREO era , 2011 .

[18]  Nathan A. Schwadron,et al.  OFF-LIMB SOLAR CORONAL WAVEFRONTS FROM SDO/AIA EXTREME-ULTRAVIOLET OBSERVATIONS—IMPLICATIONS FOR PARTICLE PRODUCTION , 2011, 1406.2372.

[19]  P. Chen,et al.  FIRST EVIDENCE OF COEXISTING EIT WAVE AND CORONAL MORETON WAVE FROM SDO/AIA OBSERVATIONS , 2011, 1103.0871.

[20]  N. Lugaz,et al.  STUDYING EXTREME ULTRAVIOLET WAVE TRANSIENTS WITH A DIGITAL LABORATORY: DIRECT COMPARISON OF EXTREME ULTRAVIOLET WAVE OBSERVATIONS TO GLOBAL MAGNETOHYDRODYNAMIC SIMULATIONS , 2011 .

[21]  C. Schrijver,et al.  FIRST SDO AIA OBSERVATIONS OF A GLOBAL CORONAL EUV “WAVE”: MULTIPLE COMPONENTS AND “RIPPLES” , 2010, 1201.0815.

[22]  G. Attrill,et al.  EIT Waves: A Changing Understanding over a Solar Cycle , 2009 .

[23]  G. Attrill,et al.  NUMERICAL SIMULATION OF AN EUV CORONAL WAVE BASED ON THE 2009 FEBRUARY 13 CME EVENT OBSERVED BY STEREO , 2009, 0909.3095.

[24]  B. Thompson,et al.  A CATALOG OF CORONAL “EIT WAVE” TRANSIENTS , 2009 .

[25]  A. Vourlidas,et al.  “EXTREME ULTRAVIOLET WAVES” ARE WAVES: FIRST QUADRATURE OBSERVATIONS OF AN EXTREME ULTRAVIOLET WAVE FROM STEREO , 2009, 0905.2164.

[26]  E. Cliver,et al.  Origin of Coronal Shock Waves , 2008 .

[27]  M. Temmer,et al.  High-Cadence Observations of a Global Coronal Wave by STEREO EUVI , 2008, 0806.0710.

[28]  D. S. Bloomfield,et al.  The Kinematics of a Globally Propagating Disturbance in the Solar Corona , 2008, 0805.2023.

[29]  M. Temmer,et al.  Cylindrical and Spherical Pistons as Drivers of MHD Shocks , 2008 .

[30]  G. Aulanier,et al.  A New Model for Propagating Parts of EIT Waves: A Current Shell in a CME , 2008 .

[31]  J. Stenflo,et al.  Are “EIT Waves” Fast-Mode MHD Waves? , 2007, 0704.2828.

[32]  L. Driel-Gesztelyi,et al.  Coronal “Wave”: Magnetic Footprint of a Coronal Mass Ejection? , 2007 .

[33]  A. Vourlidas,et al.  The Flux-Rope Scaling of the Acceleration of Coronal Mass Ejections and Eruptive Prominences , 2006 .

[34]  A. Warmuth,et al.  First Soft X-Ray Observations of Global Coronal Waves with the GOES Solar X-Ray Imager , 2005 .

[35]  P. MacNeice,et al.  Observable Properties of the Breakout Model for Coronal Mass Ejections , 2004 .

[36]  J. Terradas,et al.  Loop Density Enhancement by Nonlinear Magnetohydrodynamic Waves , 2004 .

[37]  A. Warmuth,et al.  A multiwavelength study of solar flare waves II. Perturbation characteristics and physical interpretation , 2004 .

[38]  L. Harra,et al.  Imaging and Spectroscopic Investigations of a Solar Coronal Wave: Properties of the Wave Front and Associated Erupting Material , 2003 .

[39]  S. Wu,et al.  Evidence of EIT and Moreton Waves in Numerical Simulations , 2002 .

[40]  A. Vourlidas,et al.  Solar Phenomena Associated with “EIT Waves” , 2002 .

[41]  P. Bellan,et al.  Three-dimensional Model of the Structure and Evolution of Coronal Mass Ejections , 2002 .

[42]  Barbara J. Thompson,et al.  Interaction of EIT Waves with Coronal Active Regions , 2001 .

[43]  G. A. Gary,et al.  Plasma Beta above a Solar Active Region: Rethinking the Paradigm , 2001 .

[44]  N. Gopalswamy,et al.  Early life of coronal mass ejections , 2000 .

[45]  R. P. Drake,et al.  Criteria for Scaled Laboratory Simulations of Astrophysical MHD Phenomena , 2000 .

[46]  Andreas Klassen,et al.  Catalogue of the 1997 SOHO–EIT coronal transient waves and associated type II radio burst spectra , 2000 .

[47]  B. Vršnak,et al.  Formation Of Coronal Mhd Shock Waves – I. The Basic Mechanism , 2000 .

[48]  J. B. Gurman,et al.  SOHO/EIT observations of an Earth‐directed coronal mass ejection on May 12, 1997 , 1998 .

[49]  G. Mann Simple magnetohydrodynamic waves , 1995, Journal of Plasma Physics.

[50]  C. Goertz Plasma physics. , 1982, Science.

[51]  J. Cole,et al.  On cylindrical magnetohydrodynamic shock waves , 1961 .