The Expressive Power of Indeterminate Dataflow Primitives

Abstract We analyze the relative expressive power of variants of the indeterminate fair merge operator in the context of static dataflow. We establish that there are three different, provably inequivalent, forms of unbounded indeterminacy. In particular, we show that the well-known fair merge primitive cannot be expressed with just unbounded indeterminacy. Our proofs are based on a simple trace semantics and on identifying properties of the behaviors of networks that are invariant under network composition. The properties we consider in this paper are all generalizations of monotonicity.

[1]  Samson Abramsky,et al.  A Generalized Kahn Principle for Abstract Asynchronous Networks , 1989, Mathematical Foundations of Programming Semantics.

[2]  Grzegorz Rozenberg,et al.  Theory of Traces , 1988, Theor. Comput. Sci..

[3]  E. W. Stark A Simple Generalization of Kahn’s Principle to Indeterminate Dataflow Networks , 1990 .

[4]  Robert M. Keller,et al.  Denotational Models for Parallel Programs with Indeterminate Operators , 1977, Formal Description of Programming Concepts.

[5]  Ernst-Rüdiger Olderog,et al.  Proof Rules and Transformations Dealing with Fairness , 1983, Sci. Comput. Program..

[6]  Gordon D. Plotkin,et al.  A Powerdomain for Countable Non-Determinism (Extended Abstract) , 1982, ICALP.

[7]  Bengt Jonsson,et al.  A fully abstract trace model for dataflow networks , 1989, POPL '89.

[8]  Eugene W. Stark,et al.  Concurrent transition system semantics of process networks , 1987, POPL '87.

[9]  Krzysztof R. Apt,et al.  Countable nondeterminism and random assignment , 1986, JACM.

[10]  Samson Abramsky,et al.  On Semantic Foundations for Applicative Multiprogramming , 1983, ICALP.

[11]  Gilles Kahn,et al.  The Semantics of a Simple Language for Parallel Programming , 1974, IFIP Congress.

[12]  Nancy A. Lynch,et al.  A Proof of the Kahn Principle for Input/Output Automata , 1989, Inf. Comput..

[13]  Eugene W. Stark On the relations computable by a class of concurrent automata , 1989, POPL '90.

[14]  Prakash Panangaden,et al.  Semantics of Networks Containing Indeterminate Operators , 1984, Seminar on Concurrency.

[15]  Gordon D. Plotkin,et al.  A Powerdomain Construction , 1976, SIAM J. Comput..

[16]  Vasant Shanbhougue The expressiveness of indeterminate dataflow primitives , 1990 .

[17]  Lutz Priese,et al.  Fairness , 1988, Bull. EATCS.

[18]  Jan A. Bergstra,et al.  Linear Time and Branching Time Semantics for Recursion with Merge , 1983, ICALP.

[19]  William B. Ackerman,et al.  Scenarios: A Model of Non-Determinate Computation , 1981, ICFPC.

[20]  Prakash Panangaden,et al.  Computations, Residuals, and the POwer of Indeterminancy , 1988, ICALP.

[21]  Prakash Panangaden,et al.  Abstract Interpretation and Indeterminacy , 1984, Seminar on Concurrency.

[22]  James R. Russell Full abstraction and fixed-point principles for indeterminate computation , 1990 .

[23]  Eugene W. Stark,et al.  Concurrent Transition Systems , 1989, Theor. Comput. Sci..

[24]  Alexander Moshe Rabinovich,et al.  Nets of processes and data flow , 1988, REX Workshop.

[25]  Nancy A. Lynch,et al.  Hierarchical correctness proofs for distributed algorithms , 1987, PODC '87.

[26]  Prakash Panangaden,et al.  Nonexpressibility of fairness and signaling , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[27]  Jan A. Bergstra,et al.  Linear Time and Branching Time Semantics for Recursion with Merge , 1983, Theor. Comput. Sci..

[28]  David Michael Ritchie Park,et al.  On the Semantics of Fair Parallelism , 1979, Abstract Software Specifications.

[29]  Manfred Broy,et al.  Fixed PointTheory for Communication and Concurrency , 1982, Formal Description of Programming Concepts.

[30]  Joost N. Kok,et al.  A Fully Abstract Semantics for Data Flow Nets , 1987, PARLE.