A collinearity diagnosis of the GNSS geocenter determination

The problem of observing geocenter motion from global navigation satellite system (GNSS) solutions through the network shift approach is addressed from the perspective of collinearity (or multicollinearity) among the parameters of a least-squares regression. A collinearity diagnosis, based on the notion of variance inflation factor, is therefore developed and allows handling several peculiarities of the GNSS geocenter determination problem. Its application reveals that the determination of all three components of geocenter motion with GNSS suffers from serious collinearity issues, with a comparable level as in the problem of determining the terrestrial scale simultaneously with the GNSS satellite phase center offsets. The inability of current GNSS, as opposed to satellite laser ranging, to properly sense geocenter motion is mostly explained by the estimation, in the GNSS case, of epoch-wise station and satellite clock offsets simultaneously with tropospheric parameters. The empirical satellite accelerations, as estimated by most Analysis Centers of the International GNSS Service, slightly amplify the collinearity of the $$Z$$Z geocenter coordinate, but their role remains secondary.

[1]  Donald W. Marquaridt Generalized Inverses, Ridge Regression, Biased Linear Estimation, and Nonlinear Estimation , 1970 .

[2]  G. Beutler,et al.  A new solar radiation pressure model for GPS , 1999 .

[3]  Xavier Collilieux,et al.  IGS08: the IGS realization of ITRF2008 , 2012, GPS Solutions.

[4]  Donald Eugene. Farrar,et al.  Multicollinearity in Regression Analysis; the Problem Revisited , 2011 .

[5]  Lene Theil Skovgaard,et al.  Applied regression analysis. 3rd edn. N. R. Draper and H. Smith, Wiley, New York, 1998. No. of pages: xvii+706. Price: £45. ISBN 0‐471‐17082‐8 , 2000 .

[6]  David A. Belsley,et al.  Regression Analysis and its Application: A Data-Oriented Approach.@@@Applied Linear Regression.@@@Regression Diagnostics: Identifying Influential Data and Sources of Collinearity , 1981 .

[7]  Z. Altamimi,et al.  ITRF2008: an improved solution of the international terrestrial reference frame , 2011 .

[8]  U. Hugentobler,et al.  Impact of Earth radiation pressure on GPS position estimates , 2012, Journal of Geodesy.

[9]  David A. Belsley A Guide to using the collinearity diagnostics , 1991, Computer Science in Economics and Management.

[10]  R. Dach,et al.  Geocenter coordinates estimated from GNSS data as viewed by perturbation theory , 2013 .

[11]  F. LeMoine,et al.  A reassessment of global and regional mean sea level trends from TOPEX and Jason‐1 altimetry based on revised reference frame and orbits , 2007 .

[12]  E. Cardellach,et al.  Global distortion of GPS networks associated with satellite antenna model errors , 2007 .

[13]  Chris Rizos,et al.  The International GNSS Service in a changing landscape of Global Navigation Satellite Systems , 2009 .

[14]  Elizabeth A. Peck,et al.  Introduction to Linear Regression Analysis , 2001 .

[15]  N. Draper,et al.  Applied Regression Analysis , 1966 .

[16]  Ch. Reigber,et al.  Satellite antenna phase center offsets and scale errors in GPS solutions , 2003 .

[17]  L. Mervart,et al.  Extended orbit modeling techniques at the CODE processing center of the international GPS service for geodynamics (IGS): theory and initial results. , 1994 .

[18]  Timon Anton Springer Modeling and validating orbits and clocks using the Global Positioning System , 2002 .

[19]  N. Draper,et al.  Applied Regression Analysis: Draper/Applied Regression Analysis , 1998 .

[20]  Xavier Collilieux,et al.  Accuracy of the International Terrestrial Reference Frame origin and Earth expansion , 2011 .

[21]  Xavier Collilieux,et al.  Global sea-level rise and its relation to the terrestrial reference frame , 2009 .

[22]  P. Steigenberger,et al.  Adjustable box-wing model for solar radiation pressure impacting GPS satellites , 2012 .

[23]  D. Argus Uncertainty in the velocity between the mass center and surface of Earth , 2012 .

[24]  Pascal Willis,et al.  Terrestrial reference frame effects on global sea level rise determination from TOPEX/Poseidon altimetric data , 2004 .

[25]  T. P. Yunck,et al.  Origin of the International Terrestrial Reference Frame , 2003 .

[26]  F. N. Teferle,et al.  External Evaluation of the Terrestrial Reference Frame: Report of the Task Force of the IAG Sub-commission 1.2 , 2014 .

[27]  Pascal Willis,et al.  Improving DORIS geocenter time series using an empirical rescaling of solar radiation pressure models , 2009 .

[28]  Xavier Collilieux,et al.  Quality assessment of GPS reprocessed terrestrial reference frame , 2011 .

[29]  G. Blewitt,et al.  A New Global Mode of Earth Deformation: Seasonal Cycle Detected , 2001, Science.

[30]  J. Ray,et al.  Anomalous harmonics in the spectra of GPS position estimates , 2008 .

[31]  J. Ray,et al.  Effect of the satellite laser ranging network distribution on geocenter motion estimation , 2009 .

[32]  J. Ray,et al.  Geocenter motion and its geodetic and geophysical implications , 2012 .

[33]  Michael Meindl Combined Analysis of Observations from Different Global Navigation Satellite Systems , 2011 .

[34]  Y. Bar-Sever,et al.  Systematic biases in DORIS-derived geocenter time series related to solar radiation pressure mis-modeling , 2009 .

[35]  David LaVallee,et al.  Higher‐order ionospheric effects on the GPS reference frame and velocities , 2009 .

[36]  J. Ray Dependence of IGS Products on the ITRF Datum , 2011 .

[37]  Urs Hugentobler,et al.  Identification and Mitigation of GNSS Errors , 2006 .

[38]  A. Sluis Condition numbers and equilibration of matrices , 1969 .

[39]  Thomas A. Herring,et al.  Effects of atmospheric azimuthal asymmetry on the analysis of space geodetic data , 1997 .

[40]  Jammalamadaka Introduction to Linear Regression Analysis (3rd ed.) , 2003 .

[41]  Y. Haitovsky Multicollinearity in Regression Analysis: Comment , 1969 .