문서의 의미적 구조정보를 이용한 특허 문서 분류

특허 검색은 수많은 특허 문서 중에서 특정 해당분야의 문서집합 내에서 검색을 수행하기 때문에 정확한 특허 분류에 크게 의존하게 된다. 이러한 특허 분류의 중요성에 덧붙여, 특허 문서의 수가 빠르게 증가하게 되면서 특허를 자동으로 분류하려는 요구가 더욱 필요하게 되었다. 특허문서는 일반문서와는 달리 구조화되어 있기 때문에 특허분류를 하기 위해서는 이러한 점이 고려되어야 한다. 본 논문에서는 k-NN 방법을 이용하여 일본어 특허 문서를 자동으로 분류하는 방법을 제안한다. 훈련집합으로부터 유사문서를 검색할 때, 구조화되어 있는 특허 문서의 특징을 이용한다. 문서 전체가 아닌 [기존 기술], [응용 분야], [해결하고자 하는 문제], [문제를 해결하려는 방법] 등의 세분화된 요소끼리 비교하여 유사성을 계산한다. 특허 문서에는 사용자가 정의한 많은 의미 요소가 있기 때문에 먼저 이들을 군집화한 후에 이용한다. 실험 결과 제안한 방법이 특허문서를 그대로 이용하는 것보다는 74%, 특허문서에 나타난 〈요약〉, 〈청구항〉, 〈상세한 설명〉의 큰 구조 정보를 이용하는 것보다는 4%의 성능 향상을 가져왔다.