The solution of linear systems by using the Sherman–Morrison formula

Abstract We consider the problem of solving the linear system A x  =  b , where A is the coefficient matrix, b is the known right hand side vector and x is the solution vector to be determined. Let us suppose that A is a nonsingular square matrix, so that the linear system A x  =  b is uniquely solvable. The well known Sherman–Morrison formula, that gives the inverse of a rank-one perturbation of a matrix from the knowledge of the unperturbed inverse matrix, is used to compute the numerical solution of arbitrary linear systems, in fact it can be repetitively applied to invert an arbitrary matrix. We describe some interesting properties of the method proposed. Finally we show some numerical results obtained with the method proposed.

[1]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[3]  Herbert S. Wilf,et al.  MATRIX INVERSION BY THE ANNIHILATION OF RANK , 1959 .

[4]  Dario Andrea Bini,et al.  Metodi Numerici per l'Algebra Lineare. , 1989 .

[5]  Jack J. Dongarra,et al.  An extended set of FORTRAN basic linear algebra subprograms , 1988, TOMS.

[6]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[7]  Ed Anderson,et al.  LAPACK Users' Guide , 1995 .

[8]  Gene H. Golub,et al.  Matrix computations , 1983 .

[9]  J. Sherman,et al.  Adjustment of an Inverse Matrix Corresponding to a Change in One Element of a Given Matrix , 1950 .

[10]  Elise de Doncker,et al.  D01 Chapter-Numerical Algorithms Group, in samenwerking met de andere D01-contributors. 1) NAG Fortran Mini Manual, Mark 8, D01 18p., , 1981 .

[11]  M. Benzi,et al.  A comparative study of sparse approximate inverse preconditioners , 1999 .

[12]  Joan-Josep Climent,et al.  A note on the recursive decoupling method for solving tridiagonal linear systems , 2003, Appl. Math. Comput..

[13]  Nicholas J. Higham,et al.  INVERSE PROBLEMS NEWSLETTER , 1991 .

[14]  Nadaniela Egidi,et al.  A Sherman-Morrison approach to the solution of linear systems , 2006 .

[15]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[16]  Juana Cerdán,et al.  Preconditioning Sparse Nonsymmetric Linear Systems with the Sherman-Morrison Formula , 2003, SIAM J. Sci. Comput..