The solution of linear systems by using the Sherman–Morrison formula
暂无分享,去创建一个
[1] Y. Saad,et al. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .
[3] Herbert S. Wilf,et al. MATRIX INVERSION BY THE ANNIHILATION OF RANK , 1959 .
[4] Dario Andrea Bini,et al. Metodi Numerici per l'Algebra Lineare. , 1989 .
[5] Jack J. Dongarra,et al. An extended set of FORTRAN basic linear algebra subprograms , 1988, TOMS.
[6] Henk A. van der Vorst,et al. Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..
[7] Ed Anderson,et al. LAPACK Users' Guide , 1995 .
[8] Gene H. Golub,et al. Matrix computations , 1983 .
[9] J. Sherman,et al. Adjustment of an Inverse Matrix Corresponding to a Change in One Element of a Given Matrix , 1950 .
[10] Elise de Doncker,et al. D01 Chapter-Numerical Algorithms Group, in samenwerking met de andere D01-contributors. 1) NAG Fortran Mini Manual, Mark 8, D01 18p., , 1981 .
[11] M. Benzi,et al. A comparative study of sparse approximate inverse preconditioners , 1999 .
[12] Joan-Josep Climent,et al. A note on the recursive decoupling method for solving tridiagonal linear systems , 2003, Appl. Math. Comput..
[13] Nicholas J. Higham,et al. INVERSE PROBLEMS NEWSLETTER , 1991 .
[14] Nadaniela Egidi,et al. A Sherman-Morrison approach to the solution of linear systems , 2006 .
[15] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .
[16] Juana Cerdán,et al. Preconditioning Sparse Nonsymmetric Linear Systems with the Sherman-Morrison Formula , 2003, SIAM J. Sci. Comput..