An Inhospitable Cryptand: The Importance of Conformational Freedom in Host-Guest Complexation

[1]  J. Berná,et al.  Light-driven exchange between extended and contracted lasso-like isomers of a bistable [1]rotaxane. , 2018, Organic & biomolecular chemistry.

[2]  K. Meguellati,et al.  Synthesis and characterization of a new pillar[5]arene-based [1]rotaxane , 2018, Tetrahedron Letters.

[3]  T. Ogoshi,et al.  An amphiphilic pseudo[1]catenane: neutral guest-induced clouding point change , 2018, Beilstein journal of organic chemistry.

[4]  Eunji Lee,et al.  pseudo[1]Catenane-Type Pillar[5]thiacrown Whose Planar Chiral Inversion is Triggered by Metal Cation and Controlled by Anion. , 2018, Journal of the American Chemical Society.

[5]  H. Gibson,et al.  “Reverse” pyridyl cryptands as hosts for viologens , 2018 .

[6]  B. Jiang,et al.  Guest-regulated chirality switching of planar chiral pseudo[1]catenanes. , 2018, Organic & biomolecular chemistry.

[7]  Bradley D. Smith,et al.  Cyclodextrin Rotaxane with Switchable Pirouetting. , 2018, Organic letters.

[8]  H. Gibson,et al.  Supramolecular Pseudorotaxane Polymers from Biscryptands and Bisparaquats. , 2018, Journal of the American Chemical Society.

[9]  H. Hiemstra,et al.  Attempted [2]Catenane Synthesis via a Quasi[1]catenane by a Templated Backfolding Strategy , 2018 .

[10]  T. Takata,et al.  Topology-transformable polymers: linear–branched polymer structural transformation via the mechanical linking of polymer chains , 2018 .

[11]  H. Gibson,et al.  Improved complexation of paraquats with crown ether‐based pyridyl cryptands , 2017 .

[12]  H. Gibson,et al.  The Long and the Short of It: Regiospecific Syntheses of Isomers of Dicarbomethoxydibenzo-27-crown-9 and Binding Abilities of Their Pyridyl Cryptands. , 2017, The Journal of organic chemistry.

[13]  H. Gibson,et al.  High-Yielding Syntheses of Crown Ether-Based Pyridyl Cryptands. , 2017, The Journal of organic chemistry.

[14]  B. Jiang,et al.  Bis- and mono(m-benzoic acid)-functionalized pillar[5]arenes. , 2017, Organic & biomolecular chemistry.

[15]  Yuji Suzaki,et al.  Ferrocene-containing [1]-, [2]-, [3]- and [4]rotaxanes synthesized from a common precursor , 2016 .

[16]  H. Gibson,et al.  Multi-gram syntheses of four crown ethers using K+ as templating agent , 2016 .

[17]  H. Zhang,et al.  Mechanically selflocked chiral gemini-catenanes , 2015, Nature Communications.

[18]  F. Coutrot,et al.  Synthesis of triazolium-based mono- and tris-branched [1]rotaxanes using a molecular transporter of dibenzo-24-crown-8† †Electronic supplementary information (ESI) available: Full experimental procedures and characterization data for all compounds. See DOI: 10.1039/c5sc01722j Click here for addition , 2015, Chemical science.

[19]  C. Chipot,et al.  Threading or Tumbling? Insight into the Self-Inclusion Mechanism of an altro-α-Cyclodextrin Derivative , 2014 .

[20]  Feihe Huang,et al.  Stimuli-responsive host-guest systems based on the recognition of cryptands by organic guests. , 2014, Accounts of chemical research.

[21]  Min Xue,et al.  Design and efficient synthesis of a pillar[5]arene-based [1]rotaxane. , 2014, Chemical communications.

[22]  F. Coutrot,et al.  A pH-Sensitive Peptide-Containing Lasso Molecular Switch , 2013, Molecules.

[23]  T. Ogoshi,et al.  Solvent- and achiral-guest-triggered chiral inversion in a planar chiral pseudo[1]catenane. , 2013, Angewandte Chemie.

[24]  Feihe Huang,et al.  Supramolecular AA-BB-type linear polymers with relatively high molecular weights via the self-assembly of bis(m-phenylene)-32-crown-10 cryptands and a bisparaquat derivative. , 2011, Journal of the American Chemical Society.

[25]  M. F. Mayer,et al.  Actuator prototype: capture and release of a self-entangled [1]rotaxane. , 2010, Journal of the American Chemical Society.

[26]  Y. Takashima,et al.  Molecular puzzle ring: pseudo[1]rotaxane from a flexible cyclodextrin derivative. , 2008, Journal of the American Chemical Society.

[27]  H. Gibson,et al.  High-yielding, regiospecific synthesis of cis(4,4')-di(carbomethoxybenzo)-30-crown-10, its conversion to a pyridyl cryptand and strong complexation of 2,2'- and 4,4'-bipyridinium derivatives. , 2008, The Journal of organic chemistry.

[28]  Feihe Huang,et al.  A new functional bis(m-phenylene)-32-crown-10-based cryptand host for paraquats. , 2008, The Journal of organic chemistry.

[29]  Feihe Huang,et al.  Host size effect in the complexation of two bis(m-phenylene)-32-crown-10-based cryptands with a diazapyrenium salt , 2007 .

[30]  H. Gibson,et al.  Isomeric 2,6-pyridino-cryptands based on dibenzo-24-crown-8. , 2007, The Journal of organic chemistry.

[31]  Feihe Huang,et al.  Bis(meta-phenylene)-32-crown-10-based cryptand/diquat inclusion [2]complexes. , 2006, Chemical communications.

[32]  Zhiqing Yan,et al.  Design, synthesis, and conformational dynamics of a gated molecular basket. , 2006, Journal of the American Chemical Society.

[33]  Bradley F. Habenicht,et al.  Regioselective routes to disubstituted dibenzo crown ethers and their complexations. , 2005, Organic & biomolecular chemistry.

[34]  Feihe Huang,et al.  Bis(m-phenylene)-32-crown-10-based cryptands, powerful hosts for paraquat derivatives. , 2005, The Journal of organic chemistry.

[35]  Feihe Huang,et al.  Formation of dimers of inclusion cryptand/paraquat complexes driven by dipole-dipole and face-to-face pi-stacking interactions. , 2004, Chemical communications.

[36]  Feihe Huang,et al.  First pseudorotaxane-like [3]complexes based on cryptands and paraquat: self-assembly and crystal structures. , 2003, Journal of the American Chemical Society.

[37]  Feihe Huang,et al.  First supramolecular poly(taco complex) , 2003 .

[38]  F. Vögtle,et al.  A self-threaded "molecular 8". , 2001, Chemistry.

[39]  J. Fraser Stoddart,et al.  Controlled dethreading/rethreading of a scorpion-like pseudorotaxane and a related macrobicyclic self-complexing system , 2001 .

[40]  Mason,et al.  A New Cryptand: Synthesis and Complexation with Paraquat. , 1999, Organic letters.

[41]  David J. Williams,et al.  A Molecular Chameleon: Chromophoric Sensing by a Self-Complexing Molecular Assembly. , 1998, Angewandte Chemie.

[42]  David J. Williams,et al.  Ein molekulares Chamäleon: ein selbstkomplexierendes molekulares Aggregat als chromophorer Sensor , 1998 .

[43]  H. Gibson,et al.  DIFUNCTIONAL DERIVATIVES OF BIS(M-PHENYLENE)-32-CROWN-10 , 1997 .

[44]  T. Chan,et al.  Spruce budworm (Choristoneura fumiferana) antifeedants 4. Synthesis of specionin and biological studies , 1994 .

[45]  H. Gibson,et al.  Difunctional paraquat dications (viologens) and their crown complexes: a new class of rotaxane monomers , 1992 .

[46]  David J. Williams,et al.  The self-assembly of complexes with [2]pseudorotaxane superstructures , 1991 .

[47]  Kimberly Dilts,et al.  The synthesis of substituted benzyl phenyl ethers: An undergraduate organic chemistry experiment , 1990 .

[48]  David J. Williams,et al.  Complexation of Paraquat and Diquat by a bismetaphenylene-32-crown-10 derivative , 1987 .

[49]  David J. Williams,et al.  Complex formation between bisparaphenylene-(3n+4)-crown-n ethers and the paraquat and diquat dications , 1987 .

[50]  David J. Williams,et al.  Complexation of Diquat by a regiospecifically synthesised macrobicyclic receptor molecule , 1985 .

[51]  G. Schill Die gezielte Synthese von Catena‐Verbindungen, VIII. Umwandlung einer Triansa‐Verbindung in eine Catena‐Verbindung , 1967 .