Significant efficiency enhancement of carbon-based CsPbI2Br perovskite solar cells enabled by optimizing tin oxide electron transport layer

[1]  Zhiguang Guo,et al.  All-Inorganic Perovskite Solar Cells with Tetrabutylammonium Acetate as the Buffer Layer between the SnO2 Electron Transport Film and CsPbI3. , 2022, ACS applied materials & interfaces.

[2]  A. Nasibulin,et al.  Surface Passivation for Efficient Bifacial HTL-free Perovskite Solar Cells with SWCNT Top Electrodes , 2021, ACS Applied Energy Materials.

[3]  Liyuan Han,et al.  Interface Energy‐Level Management toward Efficient Tin Perovskite Solar Cells with Hole‐Transport‐Layer‐Free Structure , 2021, Advanced Functional Materials.

[4]  Xichuan Yang,et al.  Interfacial Molecular Doping and Energy Level Alignment Regulation for Perovskite Solar Cells with Efficiency Exceeding 23% , 2021, ACS Energy Letters.

[5]  Jinsong Hu,et al.  Electrical Loss Management by Molecularly Manipulating Dopant‐free Poly(3‐hexylthiophene) towards 16.93 % CsPbI 2 Br Solar Cells , 2021, Angewandte Chemie.

[6]  Jianhua Xu,et al.  Additive‐Induced Synergies of Defect Passivation and Energetic Modification toward Highly Efficient Perovskite Solar Cells , 2021, Advanced Energy Materials.

[7]  Huicong Liu,et al.  Composition manipulation boosts the efficiency of carbon-based CsPbI3 perovskite solar cells to beyond 14% , 2021, Nano Energy.

[8]  Jinsong Hu,et al.  Electrical Loss Management by Molecularly Manipulating Dopant-free Poly(3-hexylthiophene) towards 16.93% CsPbI2Br Solar Cells. , 2021, Angewandte Chemie.

[9]  Q. Tang,et al.  Multifunctional brominated graphene oxide boosted charge extraction for high-efficiency and stable all-inorganic CsPbBr3 perovskite solar cells , 2021 .

[10]  J. Noh,et al.  Spontaneous interface engineering for dopant-free poly(3-hexylthiophene) perovskite solar cells with efficiency over 24% , 2021 .

[11]  Chunfu Zhang,et al.  Performance Improvement of All-Inorganic, Hole-Transport-Layer-Free Perovskite Solar Cells Through Dipoles-Adjustion by Polyethyleneimine Incorporating , 2021, IEEE Electron Device Letters.

[12]  Yueping Fang,et al.  Modification of Energy Level Alignment for Boosting Carbon‐Based CsPbI2Br Solar Cells with 14% Certified Efficiency , 2021, Advanced Functional Materials.

[13]  Seong Sik Shin,et al.  Efficient perovskite solar cells via improved carrier management , 2021, Nature.

[14]  Yueping Fang,et al.  Perovskite‐Compatible Carbon Electrode Improving the Efficiency and Stability of CsPbI 2 Br Solar Cells , 2020 .

[15]  L. Etgar,et al.  Current Density Mismatch in Perovskite Solar Cells , 2020, ACS Energy Letters.

[16]  Abbas Amini,et al.  Towards Simplifying the Device Structure of High‐Performance Perovskite Solar Cells , 2020, Advanced Functional Materials.

[17]  Yuanhang Cheng,et al.  Resolving Spectral Mismatch Errors for Perovskite Solar Cells in Commercial Class AAA Solar Simulators. , 2020, The journal of physical chemistry letters.

[18]  Longfei Mi,et al.  Carbon electrode engineering for high efficiency all-inorganic perovskite solar cells , 2020, RSC advances.

[19]  D. Kuang,et al.  Understanding of carrier dynamics, heterojunction merits and device physics: towards designing efficient carrier transport layer-free perovskite solar cells. , 2019, Chemical Society reviews.

[20]  F. Bella,et al.  Carbon-based materials for stable, cheaper and large-scale processable perovskite solar cells , 2019, Energy & Environmental Science.

[21]  Yongli Gao,et al.  High‐Performance Flexible Perovskite Solar Cells via Precise Control of Electron Transport Layer , 2019, Advanced Energy Materials.

[22]  T. Ma,et al.  Niobium Incorporation into CsPbI2Br for Stable and Efficient All-Inorganic Perovskite Solar Cells. , 2019, ACS applied materials & interfaces.

[23]  Yuzhu Li,et al.  Efficient and carbon-based hole transport layer-free CsPbI2Br planar perovskite solar cells using PMMA modification , 2019, Journal of Materials Chemistry C.

[24]  Yongfang Li,et al.  Precise Control of Crystal Growth for Highly Efficient CsPbI2Br Perovskite Solar Cells , 2019, Joule.

[25]  Sai Ma,et al.  Low-temperature-processed inorganic perovskite solar cells via solvent engineering with enhanced mass transport , 2018 .

[26]  G. Fang,et al.  Review on the Application of SnO2 in Perovskite Solar Cells , 2018, Advanced Functional Materials.

[27]  Z. Yin,et al.  Solvent-controlled growth of inorganic perovskite films in dry environment for efficient and stable solar cells , 2018, Nature Communications.

[28]  Zhang Lan,et al.  Stable Inverted Planar Perovskite Solar Cells with Low‐Temperature‐Processed Hole‐Transport Bilayer , 2017 .

[29]  Wenguang Li,et al.  Improving the Extraction of Photogenerated Electrons with SnO2 Nanocolloids for Efficient Planar Perovskite Solar Cells , 2015 .

[30]  Sandeep Kumar Pathak,et al.  Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells , 2013, Nature Communications.

[31]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[32]  Guiqiang Wang,et al.  Remarkable quality improvement of CsPbIBr2 perovskite film by cellulose acetate addition for efficient and stable carbon-based inorganic perovskite solar cells , 2021 .

[33]  Mingkui Wang,et al.  Modulated Growth of High-Quality CsPbI3 Perovskite Film by Molybdenum Modified SnO2 Layer for Highly Efficient Solar Cells , 2021, Journal of Materials Chemistry A.

[34]  All-Inorganic Perovskite Solar Cells with Tetrabutylammonium Acetate as the Buffer Layer between the SnO2 Electron Transport Film and CsPbI3 , 2022 .