Stochastic analysis of three-dimensional hydraulic conductivity upscaling in a heterogeneous tropical soil

Abstract Hydraulic conductivity (K) heterogeneity is seldom considered in geotechnical practice for the impossibility of sampling the entire area of interest and for the difficulty of accounting for scale effects. Stochastic three-dimensional K upscaling can tackle these two problems, and a workflow is described with an application in a tropical soil. The application shows that K heterogeneity can be incorporated in the daily practice of the geotechnical modeler while discussing the aspects to consider when performing the upscaling so that the upscaled models reproduce the average fluxes at the fine scale.

[1]  W. T. Cardwell,et al.  Average Permeabilities of Heterogeneous Oil Sands , 1945 .

[2]  Jesús Carrera,et al.  Scale effects in transmissivity , 1996 .

[3]  Liangping Li,et al.  An approach to handling non-Gaussianity of parameters and state variables in ensemble Kalman filtering , 2011 .

[4]  Shi-Jin Feng,et al.  A model for gas pressure in layered landfills with horizontal gas collection systems , 2015 .

[5]  S. Lacasse,et al.  Uncertainties in characterising soil properties , 1996 .

[6]  A.P.S. Selvadurai,et al.  On the effective permeability of a heterogeneous porous medium: the role of the geometric mean , 2014 .

[7]  J. Gómez-Hernández,et al.  Upscaling hydraulic conductivities in heterogeneous media: An overview , 1996 .

[8]  J. J. Gómez-Hernández,et al.  Probabilistic assessment of travel times in groundwater modeling , 1994 .

[9]  Chuangbing Zhou,et al.  Two-dimensional probabilistic infiltration analysis with a spatially varying permeability function , 2013 .

[10]  P. Renard,et al.  Calculating equivalent permeability: a review , 1997 .

[11]  R. Chapuis Numerical modeling of reservoirs or pipes in groundwater seepage , 2009 .

[12]  R. Bilonick An Introduction to Applied Geostatistics , 1989 .

[13]  V. Tidwell,et al.  Permeability Upscaling Measured on a Block of Berea Sandstone: Results and Interpretation , 1999 .

[14]  G. L. Sivakumar Babu,et al.  Probabilistic analysis of groundwater and radionuclide transport model from near surface disposal facilities , 2018 .

[15]  Timothy D. Scheibe,et al.  Scaling of flow and transport behavior in heterogeneous groundwater systems , 1998 .

[16]  Andre G. Journel,et al.  Stochastic imaging of the Wilmington clastic sequence , 1990 .

[17]  Harrie-Jan Hendricks Franssen,et al.  Jointly Mapping Hydraulic Conductivity and Porosity by Assimilating Concentration Data via Ensemble Kalman Filter , 2012 .

[18]  Jesús Carrera,et al.  A Synthesis of Approaches to Upscaling of Hydraulic Conductivities , 1995 .

[19]  Mauro Giudici,et al.  About the Symmetry of the Upscaled Equivalent Transmissivity Tensor , 2007 .

[20]  M. M. N. Pressinotti,et al.  Estudos sedimentológicos das formações Botucatu e Pirambóia na região de Santa Rita do Passa Quatro, SP , 1981 .

[21]  Steven M. Gorelick,et al.  Effective groundwater model parameter values: Influence of spatial variability of hydraulic conductivity, leakance, and recharge , 1989 .

[22]  K. Osinubi,et al.  Hydraulic Conductivity of Compacted Lateritic Soil , 2005 .

[23]  M. Thévenot,et al.  Evaluating equilibrium and non-equilibrium transport of bromide and isoproturon in disturbed and undisturbed soil columns. , 2007, Journal of contaminant hydrology.

[24]  Tae Sup Yun,et al.  Upscaling of Navier–Stokes equations in porous media: Theoretical, numerical and experimental approach , 2009 .

[25]  J.-P. Renaud,et al.  Prediction of rainfall-induced transient water pressure head behind a retaining wall using a high-resolution finite element model , 2003 .

[26]  Liangping Li,et al.  Transport upscaling using multi-rate mass transfer in three-dimensional highly heterogeneous porous media , 2011 .

[27]  G. Matheron Éléments pour une théorie des milieux poreux , 1967 .

[28]  A. Skauge,et al.  Evaluation of representative elementary volume for a vuggy carbonate rock—Part: Porosity, permeability, and dispersivity , 2013 .

[29]  H. Diersch,et al.  FEFLOW: Finite Element Modeling of Flow, Mass and Heat Transport in Porous and Fractured Media , 2014 .

[30]  Larry W. Lake,et al.  The Origins of Anisotropy (includes associated papers 18394 and 18458 ) , 1988 .

[31]  J. Gómez-Hernández,et al.  Joint Sequential Simulation of MultiGaussian Fields , 1993 .

[32]  J. Jaime Gómez-Hernández,et al.  Three-dimensional hydraulic conductivity upscaling in groundwater modeling , 2010, Comput. Geosci..

[33]  Michael Edward Hohn,et al.  An Introduction to Applied Geostatistics: by Edward H. Isaaks and R. Mohan Srivastava, 1989, Oxford University Press, New York, 561 p., ISBN 0-19-505012-6, ISBN 0-19-505013-4 (paperback), $55.00 cloth, $35.00 paper (US) , 1991 .

[34]  C. Gable,et al.  Equivalent hydraulic conductivity of three-dimensional heterogeneous porous media: An upscaling study based on an experimental stratigraphy , 2010 .

[35]  Liangping Li,et al.  A comparative study of three-dimensional hydraulic conductivity upscaling at the macro-dispersion experiment (MADE) site, Columbus Air Force Base, Mississippi (USA) , 2011 .

[36]  R. Horne,et al.  Computing Absolute Transmissibility in the Presence of Fine-Scale Heterogeneity , 1987 .

[37]  M. Chouteau,et al.  Evaluating the hydraulic conductivity at three different scales within an unconfined sand aquifer at Lachenaie, Quebec , 2005 .

[38]  Gregory B. Baecher,et al.  Estimating Autocovariance of In‐Situ Soil Properties , 1993 .

[39]  D. V. Griffiths,et al.  One-dimensional consolidation theories for layered soil and coupled and uncoupled solutions by the finite-element method , 2010 .

[40]  Craig H. Benson,et al.  STATISTICAL SAMPLE SIZE FOR CONSTRUCTION OF SOIL LINERS. DISCUSSION AND CLOSURE , 1994 .

[41]  V. Tidwell Scaling Issues in Porous and Fractured Media , 2006 .

[42]  J. Gómez-Hernández,et al.  Performance assessment of solute transport upscaling methods in the context of nuclear waste disposal , 2005 .

[43]  Graham E. Fogg,et al.  Efficient upscaling of hydraulic conductivity in heterogeneous alluvial aquifers , 2008 .

[44]  G. Matheron Principles of geostatistics , 1963 .

[45]  Pierre Goovaerts,et al.  Geostatistical modelling of uncertainty in soil science , 2001 .

[46]  A. J. Desbarats,et al.  Spatial averaging of hydraulic conductivity in three-dimensional heterogeneous porous media , 1992 .

[47]  J. Hopmans,et al.  Comparison of Air and Water Permeability between Disturbed and Undisturbed Soils , 2005 .

[48]  Amit Srivastava,et al.  Influence of Spatial Variation of Hydraulic Conductivity of Municipal Solid Waste on Performance of Bioreactor Landfill , 2013 .

[49]  Rick Chalaturnyk,et al.  An overview of soil heterogeneity: quantification and implications on geotechnical field problems , 2003 .

[50]  P. Vidstrand Comparison of Upscaling Methods to Estimate Hydraulic Conductivity , 2001, Ground water.

[51]  Gordon A. Fenton,et al.  Probabilistic Analysis of Coupled Soil Consolidation , 2010 .

[52]  A. Desbarats,et al.  Numerical estimation of effective permeability in sand-shale formations , 1987 .

[53]  H. Pauwels,et al.  Upscaling and regionalizing hydraulic conductivity and effective porosity at watershed scale in deeply weathered crystalline aquifers , 2012 .

[54]  Allen G. Hunt,et al.  Scale-dependent hydraulic conductivity in anisotropic media from dimensional cross-over , 2006 .

[55]  X. Sanchez‐Vila,et al.  Representative hydraulic conductivities in saturated groundwater flow , 2006 .

[56]  Nicolas Remy S-GeMS: The Stanford Geostatistical Modeling Software: A Tool for New Algorithms Development , 2005 .

[57]  Hans-Jörg Vogel,et al.  Moving through scales of flow and transport in soil , 2003 .

[58]  E. Paleologos,et al.  Numerical investigation of the anisotropic hydraulic conductivity behavior in heterogeneous porous media , 2004 .

[59]  Sung-Eun Cho Probabilistic stability analysis of rainfall-induced landslides considering spatial variability of permeability , 2014 .

[60]  D. V. Griffiths,et al.  Determining an appropriate finite element size for modelling the strength of undrained random soils , 2015 .

[61]  K. Belitz,et al.  Calibration of a Texture-Based Model of a Ground-Water Flow System, Western San Joaquin Valley, Californiaa , 1991 .

[62]  J. Jaime Gómez-Hernández,et al.  Theory and Practice of Sequential Simulation , 1994 .

[63]  Clayton V. Deutsch,et al.  Power Averaging for Block Effective Permeability , 1986 .

[64]  Y. Cheng,et al.  Effects of spatial autocorrelation structure of permeability on seepage through an embankment on a soil foundation , 2017 .

[65]  Gordon A. Fenton,et al.  THREE-DIMENSIONAL SEEPAGE THROUGH SPATIALLY RANDOM SOIL , 1997 .

[66]  Yoram Rubin,et al.  A stochastic approach to the problem of upscaling of conductivity in disordered media: Theory and unconditional numerical simulations , 1990 .

[67]  H. S. Price,et al.  Flow in Heterogeneous Porous Media , 1961 .