Synthesis, Internalization and Visualization of N-(4-Carbomethoxy) Pyrrolidone Terminated PAMAM [G5:G3-TREN] Tecto(dendrimers) in Mammalian Cells †

Tecto(dendrimers) are well-defined, dendrimer cluster type covalent structures. In this article, we present the synthesis of such a PAMAM [G5:G3-(TREN)]-N-(4-carbomethoxy) pyrrolidone terminated tecto(dendrimer). This tecto(dendrimer) exhibits nontraditional intrinsic luminescence (NTIL; excitation 376 nm; emission 455 nm) that has been attributed to three fluorescent components characterized by different fluorescence lifetimes. Furthermore, it has been shown that this PAMAM [G5:G3-(TREN)]-N-(4-carbomethoxy) pyrrolidone terminated tecto(dendrimer) is able to form a polyplex with double stranded DNA, and is nontoxic for HeLa and HMEC-1 cells up to a concentration of 10 mg/mL, even though it accumulates in endosomal compartments as demonstrated by its unique NTIL emission properties. Many of the above features would portend the proposed use of this tecto(dendrimer) as an efficient transfection agent. Quite surprisingly, transfection activity could not be demonstrated in HeLa cells, and the possible reasons are discussed in the article.

[1]  Cong Song,et al.  Superstructured poly(amidoamine) dendrimer-based nanoconstructs as platforms for cancer nanomedicine: A concise review , 2020 .

[2]  D. Tomalia,et al.  The Role of Branch Cell Symmetry and Other Critical Nanoscale Design Parameters in the Determination of Dendrimer Encapsulation Properties , 2020, Biomolecules.

[3]  D. Tomalia,et al.  Non-Traditional Intrinsic Luminescence (NTIL): Dynamic Quenching Demonstrates the Presence of Two Distinct Fluorophore Types Associated with NTIL Behavior in Pyrrolidone-Terminated PAMAM Dendrimers , 2019, The Journal of Physical Chemistry C.

[4]  D. Tomalia,et al.  Non-traditional intrinsic luminescence: inexplicable blue fluorescence observed for dendrimers, macromolecules and small molecular structures lacking traditional/conventional luminophores , 2019, Progress in Polymer Science.

[5]  D. Tomalia,et al.  Determination of non-traditional intrinsic fluorescence (NTIF) emission sites in 1-(4-carbomethoxypyrrolidone)-PAMAM dendrimers using CNDP-based quenching studies , 2018, Journal of Nanoparticle Research.

[6]  Jing Liu,et al.  Poly (amidoamine) (PAMAM) dendrimer mediated delivery of drug and pDNA/siRNA for cancer therapy. , 2018, International journal of pharmaceutics.

[7]  B. Pickard,et al.  PEGylation of polypropylenimine dendrimers: effects on cytotoxicity, DNA condensation, gene delivery and expression in cancer cells , 2018, Scientific Reports.

[8]  Mario Ficker,et al.  Pyrrolidone Modification Prevents PAMAM Dendrimers from Activation of Pro-Inflammatory Signaling Pathways in Human Monocytes. , 2018, Molecular pharmaceutics.

[9]  D. Otto,et al.  Poly(amidoamine) Dendrimers as a Pharmaceutical Excipient. Are We There yet? , 2018, Journal of pharmaceutical sciences.

[10]  D. Tomalia,et al.  Modified PAMAM dendrimer with 4-carbomethoxypyrrolidone surface groups-its uptake, efflux, and location in a cell. , 2017, Colloids and surfaces. B, Biointerfaces.

[11]  R. Poupot,et al.  Pro-Inflammatory Versus Anti-Inflammatory Effects of Dendrimers: The Two Faces of Immuno-Modulatory Nanoparticles , 2017, Nanomaterials.

[12]  A. Valente,et al.  PAMAM dendrimer hydrogel film—biocompatible material to an efficient dermal delivery of drugs , 2017, Journal of Nanoparticle Research.

[13]  N. Likhanova,et al.  Synthesis of PAMAM dendrimers with porphyrin core and functionalized periphery as templates of metal composite materials and their toxicity evaluation , 2017 .

[14]  R. Lister,et al.  Synthetically controlling dendrimer flexibility improves delivery of large plasmid DNA , 2017, Chemical science.

[15]  D. Appelhans,et al.  Sugar-Modified Poly(propylene imine) Dendrimers Stimulate the NF-κB Pathway in a Myeloid Cell Line , 2016, Pharmaceutical Research.

[16]  P. Kesharwani,et al.  PEGylated PAMAM dendrimers: Enhancing efficacy and mitigating toxicity for effective anticancer drug and gene delivery. , 2016, Acta biomaterialia.

[17]  S. Khanna,et al.  A Systematic Framework and Nanoperiodic Concept for Unifying Nanoscience: Hard/Soft Nanoelements, Superatoms, Meta-Atoms, New Emerging Properties, Periodic Property Patterns, and Predictive Mendeleev-like Nanoperiodic Tables. , 2016, Chemical reviews.

[18]  R. Haag,et al.  Dendritic core-shell systems as soft drug delivery nanocarriers. , 2015, Biotechnology advances.

[19]  Mario Ficker,et al.  Guest-Host Chemistry with Dendrimers—Binding of Carboxylates in Aqueous Solution , 2015, PloS one.

[20]  Mario Ficker,et al.  PAMAM dendrimer with 4-carbomethoxypyrrolidone--in vitro assessment of neurotoxicity. , 2015, Nanomedicine : nanotechnology, biology, and medicine.

[21]  M. Teodorescu,et al.  Poly(vinylpyrrolidone) – A Versatile Polymer for Biomedical and Beyond Medical Applications , 2015 .

[22]  Ying Qian,et al.  A study using quantum chemical theory methods on the intrinsic fluorescence emission and the possible emission mechanisms of PAMAM , 2014 .

[23]  E. Leriche,et al.  Glycine-modified polyamidoamine dendrimers: synthesis and structural characterization using nuclear magnetic resonance, ion-mobility mass spectrometry and capillary electrophoresis , 2014 .

[24]  M. Morilla,et al.  Enhanced antimelanoma activity of methotrexate and zoledronic acid within polymeric sandwiches. , 2014, Colloids and surfaces. B, Biointerfaces.

[25]  Viney Lather,et al.  Dendrimers in drug delivery and targeting: Drug-dendrimer interactions and toxicity issues , 2014, Journal of pharmacy & bioallied sciences.

[26]  Morteza Milani,et al.  Dendrimers: synthesis, applications, and properties , 2014, Nanoscale Research Letters.

[27]  Mingming Wang,et al.  A fluorinated dendrimer achieves excellent gene transfection efficacy at extremely low nitrogen to phosphorus ratios , 2014, Nature Communications.

[28]  E. Bustos,et al.  Applications of dendrimers in drug delivery agents, diagnosis, therapy, and detection , 2014 .

[29]  M. B. Banaszak Holl,et al.  PAMAM Dendrimers as Quantized Building Blocks for Novel Nanostructures. , 2013, Soft matter.

[30]  Dominika Wrobel,et al.  Modified PAMAM dendrimer with 4-carbomethoxypyrrolidone surface groups reveals negligible toxicity against three rodent cell-lines. , 2013, Nanomedicine : nanotechnology, biology, and medicine.

[31]  K. Miłowska,et al.  Dendrimers--revolutionary drugs for infectious diseases. , 2012, Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology.

[32]  M. Bryszewska,et al.  Surface modification of PAMAM dendrimer improves its biocompatibility. , 2012, Nanomedicine : nanotechnology, biology, and medicine.

[33]  Maria Jose Morilla,et al.  Selective cytotoxicity of PAMAM G5 core–PAMAM G2.5 shell tecto-dendrimers on melanoma cells , 2012, International journal of nanomedicine.

[34]  Emily V. Carino,et al.  Dendrimer-encapsulated nanoparticles: New synthetic and characterization methods and catalytic applications , 2011 .

[35]  L. Bronstein,et al.  Dendrimers as encapsulating, stabilizing, or directing agents for inorganic nanoparticles. , 2011, Chemical reviews.

[36]  U. Schubert,et al.  Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. , 2010, Angewandte Chemie.

[37]  M. Alonso,et al.  Core−Shell Dendriplexes with Sterically Induced Stoichiometry for Gene Delivery , 2010 .

[38]  P. M. Welch,et al.  Tecto-dendrimers: a study of covalently bound nanospheres , 2009 .

[39]  A. D'emanuele,et al.  Surface modification of PAMAM dendrimers modulates the mechanism of cellular internalization. , 2009, Bioconjugate chemistry.

[40]  Lianyong Wang,et al.  Polyamidoamine dendrimers with a modified Pentaerythritol core having high efficiency and low cytotoxicity as gene carriers. , 2009, Biomacromolecules.

[41]  A. Caminade,et al.  Polycationic phosphorus dendrimers: synthesis, characterization, study of cytotoxicity, complexation of DNA, and transfection experiments , 2009 .

[42]  Chih-Chien Chu,et al.  Fluorescence Investigations of Oxygen-Doped Simple Amine Compared with Fluorescent PAMAM Dendrimer. , 2009, Macromolecular rapid communications.

[43]  W. Szymanski,et al.  Determination of Molecular Weight, Particle Size, and Density of High Number Generation PAMAM Dendrimers Using MALDI−TOF−MS and nES−GEMMA , 2007 .

[44]  Donald A Tomalia,et al.  Dendrimers in biomedical applications--reflections on the field. , 2005, Advanced drug delivery reviews.

[45]  C. Liang,et al.  Hydrophobic Brønsted acid-base ionic liquids based on PAMAM dendrimers with high proton conductivity and blue photoluminescence. , 2005, Journal of the American Chemical Society.

[46]  H. Möhwald,et al.  Statistical megamer morphologies and materials from PAMAM dendrimers , 2005 .

[47]  J. Fréchet,et al.  Discovery of dendrimers and dendritic polymers: A brief historical perspective* , 2002 .

[48]  D. Tomalia,et al.  Partial shell-filled core-shell tecto(dendrimers): A strategy to surface differentiated nano-clefts and cusps , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[49]  S. Tucker,et al.  Intrinsic Fluorescence of Carboxylate-Terminated Polyamido Amine Dendrimers , 2001 .

[50]  R. Ispasoiu,et al.  Ultrafast time-resolved photoluminescence from novel metal–dendrimer nanocomposites , 2001 .

[51]  S. Zimmerman,et al.  Supramolecular Chemistry of Dendrimers , 2001 .

[52]  D. Tomalia,et al.  Core–Shell Tecto(dendrimers): I. Synthesis and Characterization of Saturated Shell Models , 2000 .

[53]  Jing Li,et al.  Dendrimers as reactive modules for the synthesis of new structure-controlled, higher-complexity megamers , 2000 .

[54]  Steven C. Zimmerman,et al.  Dendrimers in Supramolecular Chemistry: From Molecular Recognition to Self-Assembly. , 1997, Chemical reviews.

[55]  D. Tomalia,et al.  The random parking of spheres on spheres , 1996 .

[56]  Nathalie Launay,et al.  A General Synthetic Strategy for Neutral Phosphorus‐Containing Dendrimers , 1994 .

[57]  G. Kallos,et al.  Molecular weight determination of a polyamidoamine Starburst polymer by electrospray ionization mass spectrometry , 1991 .

[58]  James R. Dewald,et al.  A New Class of Polymers: Starburst-Dendritic Macromolecules , 1985 .