Efficient Prediction of the EM Response of Reflectarray Antenna Elements by an Advanced Statistical Learning Method

An innovative strategy based on an advanced statistical learning method is introduced to efficiently and accurately predict the electromagnetic response of complex-shaped reflectarray elements. The computation of the scattering coefficients of periodic arrangements, characterized by an arbitrary number of degrees of freedom, is first recast as a vectorial regression problem and then solved with a learning-by-example strategy exploiting the ordinary kriging paradigm. A set of representative numerical experiments dealing with different element geometries is presented to assess the accuracy, the computational efficiency, and the flexibility of the proposed technique also in comparison with state-of-the-art machine learning methods.

[1]  Donald R. Jones,et al.  Efficient Global Optimization of Expensive Black-Box Functions , 1998, J. Glob. Optim..

[2]  Renaud Loison,et al.  Accurate synthesis of a dual linearly polarized reflectarray , 2009, 2009 3rd European Conference on Antennas and Propagation.

[3]  Fan Yang,et al.  A Low-Cost Metal-Only Reflectarray Using Modified Slot-Type Phoenix Element With 360° Phase Coverage , 2016, IEEE Transactions on Antennas and Propagation.

[4]  D. Berry,et al.  The reflectarray antenna , 1963 .

[5]  D. Bresciani,et al.  A unified approach to the characterization of frequency and polarization selective surfaces , 1993, Proceedings of IEEE Antennas and Propagation Society International Symposium.

[6]  Fan Yang,et al.  A Single-Layer High-Efficiency Wideband Reflectarray Using Hybrid Design Approach , 2017, IEEE Antennas and Wireless Propagation Letters.

[7]  Yahya Rahmat-Samii,et al.  Technology Trends and Challenges of Antennas for Satellite Communication Systems , 2015, IEEE Transactions on Antennas and Propagation.

[8]  Atef Z. Elsherbeni,et al.  A Novel Phase Synthesis Approach for Wideband Reflectarray Design , 2015, IEEE Transactions on Antennas and Propagation.

[9]  Christophe Reboud,et al.  Real-Time NDT-NDE Through an Innovative Adaptive Partial Least Squares SVR Inversion Approach , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[10]  K. Keyghobad,et al.  A High-Efficiency Ku-Band Reflectarray Antenna Using Single-Layer Multiresonance Elements , 2014, IEEE Antennas and Wireless Propagation Letters.

[11]  Federico Viani,et al.  Electromagnetic passive localization and tracking of moving targets in a WSN-infrastructured environment , 2010 .

[12]  A. Z. Elsherbeni,et al.  Radiation Analysis Approaches for Reflectarray Antennas [Antenna Designer's Notebook] , 2013, IEEE Antennas and Propagation Magazine.

[13]  Thomas J. Santner,et al.  Design and analysis of computer experiments , 1998 .

[14]  Fan Yang,et al.  A Study of Phase Quantization Effects for Reconfigurable Reflectarray Antennas , 2017, IEEE Antennas and Wireless Propagation Letters.

[15]  Fan Yang,et al.  Single-Layer Dual-Band Reflectarray Antennas With Wide Frequency Ratios and High Aperture Efficiencies Using Phoenix Elements , 2017, IEEE Transactions on Antennas and Propagation.

[16]  Bernhard Schölkopf,et al.  A tutorial on support vector regression , 2004, Stat. Comput..

[17]  Paolo Rocca,et al.  Predicting antenna pattern degradations in microstrip reflectarrays through interval arithmetic , 2016 .

[18]  Herve Legay,et al.  ‘Phoenix’ reflectarray unit cell with reduced size and inductive loading , 2016 .

[19]  Yun-Kang Sui,et al.  An efficient global optimization algorithm based on augmented radial basis function , 2008 .

[20]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[21]  Renaud Loison,et al.  The Phoenix Cell: A New Reflectarray Cell With Large Bandwidth and Rebirth Capabilities , 2011, IEEE Antennas and Wireless Propagation Letters.

[22]  Riccardo Tascone,et al.  Scattering from Passive Arrays in Plane Stratified Regions , 1985 .

[23]  Thomas Allan Metzler Design and analysis of a microstrip reflectarray , 1993 .

[24]  John C. Platt,et al.  Fast training of support vector machines using sequential minimal optimization, advances in kernel methods , 1999 .

[25]  Søren Nymand Lophaven,et al.  DACE - A Matlab Kriging Toolbox , 2002 .

[26]  Manos M. Tentzeris,et al.  Inkjet-Printed Flexible mm-Wave Van-Atta Reflectarrays: A Solution for Ultralong-Range Dense Multitag and Multisensing Chipless RFID Implementations for IoT Smart Skins , 2016, IEEE Transactions on Microwave Theory and Techniques.

[27]  D. Pozar,et al.  Design of millimeter wave microstrip reflectarrays , 1997 .

[28]  Andy J. Keane,et al.  Engineering Design via Surrogate Modelling - A Practical Guide , 2008 .

[29]  Fan Yang,et al.  An FSS-Backed 20/30-GHz Dual-Band Circularly Polarized Reflectarray With Suppressed Mutual Coupling and Enhanced Performance , 2017, IEEE Transactions on Antennas and Propagation.

[30]  Roberto Sorrentino,et al.  A Transportable Reflectarray Antenna for Satellite Ku-band Emergency Communications , 2015, IEEE Transactions on Antennas and Propagation.

[31]  Aleksi Tamminen,et al.  Reflectarray Design for 120-GHz Radar Application: Measurement Results , 2013, IEEE Transactions on Antennas and Propagation.

[32]  Federico Viani,et al.  System-by-design: A new paradigm for handling design complexity , 2014, The 8th European Conference on Antennas and Propagation (EuCAP 2014).

[33]  Fan Yang,et al.  A 1-Bit $10 \times 10$ Reconfigurable Reflectarray Antenna: Design, Optimization, and Experiment , 2016, IEEE Transactions on Antennas and Propagation.

[34]  M. Arrebola,et al.  Analysis, design and prototyping of reflectarray antennas for space applications , 2013, 2013 Loughborough Antennas & Propagation Conference (LAPC).

[35]  Thomas J. Santner,et al.  The Design and Analysis of Computer Experiments , 2003, Springer Series in Statistics.

[36]  Luc Pronzato,et al.  A comparison between Kriging and radial basis function networks for nonlinear prediction , 1999, NSIP.