Hadamard Phylogenetic Methods and the n-taxon Process

The Hadamard transform (Hendy and Penny, Syst. Zool. 38(4):297–309, 1989; Hendy, Syst. Zool. 38(4):310–321, 1989) provides a way to work with stochastic models for sequence evolution without having to deal with the complications of tree space and the graphical structure of trees. Here we demonstrate that the transform can be expressed in terms of the familiar P[τ]=eQ[τ] formula for Markov chains. The key idea is to study the evolution of vectors of states, one vector entry for each taxa; we call this the n-taxon process. We derive transition probabilities for the process. Significantly, the findings show that tree-based models are indeed in the family of (multi-variate) exponential distributions.

[1]  Algebraic Statistics for Computational Biology: Extending Tree Models to Splits Networks , 2005 .

[2]  D. Huson,et al.  Application of phylogenetic networks in evolutionary studies. , 2006, Molecular biology and evolution.

[3]  Vincent Moulton,et al.  Spectronet: a package for computing spectra and median networks. , 2002, Applied bioinformatics.

[4]  Bernard M. E. Moret,et al.  Phylogenetic Inference , 2011, Encyclopedia of Parallel Computing.

[5]  A. von Haeseler,et al.  The impact of single substitutions on multiple sequence alignments , 2008, Philosophical Transactions of the Royal Society B: Biological Sciences.

[6]  M. Hendy The Relationship Between Simple Evolutionary Tree Models and Observable Sequence Data , 1989 .

[7]  Terence P. Speed,et al.  Invariants of Some Probability Models Used in Phylogenetic Inference , 1993 .

[8]  Michael D. Hendy,et al.  A Framework for the Quantitative Study of Evolutionary Trees , 1989 .

[9]  M. Hendy,et al.  Hadamard Conjugation for the Kimura 3ST Model: Combinatorial Proof Using Path Sets , 2005, TCBB.

[10]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[11]  V. Moulton,et al.  Neighbor-net: an agglomerative method for the construction of phylogenetic networks. , 2002, Molecular biology and evolution.

[12]  A FOURIER INVERSION FORMULA FOR EVOLUTIONARY TREES , 1993 .

[13]  J. Bashford,et al.  × U ( 1 ) symmetry of the Kimura 3 ST model and phylogenetic branching processes , 2008 .

[14]  A. L.,et al.  A FOURIER INVERSION FORMULA FOR EVOLUTIONARY TREES , 1992 .

[15]  Seth Sullivant,et al.  Toric Ideals of Phylogenetic Invariants , 2004, J. Comput. Biol..

[16]  László A. Székely,et al.  SPECTRAL ANALYSIS AND A CLOSEST TREE METHOD FOR GENETIC SEQUENCES , 1992 .

[17]  D. Bryant 17 Extending Tree Models to Split Networks , 2006 .

[19]  M. Steel,et al.  LETTER TO THE EDITOR: U(1) × U(1) × U(1) symmetry of the Kimura 3ST model and phylogenetic branching processes , 2003, q-bio/0310037.

[20]  László A. Székely,et al.  Fourier Calculus on Evolutionary Trees , 1993 .