Maximal Lp-Regularity for Stochastic Evolution Equations
暂无分享,去创建一个
[1] H. Amann,et al. BOUNDED R00-CALCULUS FOR ELLIPTIC OPERATORS , 2013 .
[2] Mark Veraar,et al. A note on maximal estimates for stochastic convolutions , 2010, 1004.5061.
[3] F. Flandoli. Dirichlet boundary value problem for stochastic parabolic equations: compatibility relations and regularity of solutions , 1990 .
[4] Boris Rozovskii,et al. A Note on Krylov's $L_p$-Theory for Systems of SPDEs , 2001 .
[5] E. Lenglart,et al. Relation de domination entre deux processus , 1977 .
[6] Simona Fornaro,et al. -maximal Regularity for Non-autonomous Evolution Equations , 2022 .
[7] Yoshikazu Giga,et al. Domains of fractional powers of the Stokes operator in Lr spaces , 1985 .
[8] D. Nualart. The Malliavin Calculus and Related Topics , 1995 .
[9] Daisuke Fujiwara,et al. An L_r-theorem of the Helmholtz decomposition of vector fields , 1977 .
[10] H. Triebel. Theory Of Function Spaces , 1983 .
[11] N. Krylov. On the Foundation of the Lp-Theory of Stochastic Partial Differential Equations , 2005 .
[12] Derek W. Robinson,et al. Semigroup Kernels, Poisson Bounds, and Holomorphic Functional Calculus , 1996 .
[13] L. Weis,et al. Maximal Lp-regularity for Parabolic Equations, Fourier Multiplier Theorems and $H^\infty$-functional Calculus , 2004 .
[14] B. Goldys,et al. Generalized Ornstein–Uhlenbeck Semigroups: Littlewood–Paley–Stein Inequalities and the P. A. Meyer Equivalence of Norms , 2001 .
[15] 乔花玲,et al. 关于Semigroups of Linear Operators and Applications to Partial Differential Equations的两个注解 , 2003 .
[16] Lamberto Cattabriga,et al. Su un problema al contorno relativo al sistema di equazioni di Stokes , 1961 .
[17] M. Veraar,et al. On Besov regularity of Brownian motions in infinite dimensions , 2008, 0801.2959.
[18] P. Kunstmann. Navier-stokes equations on unbounded domains with rough initial data , 2010 .
[19] A. Rhandi,et al. The domain of the Ornstein-Uhlenbeck operator on an $L^p$-space with invariant measure , 2002 .
[20] I. Shigekawa. Sobolev spaces over the Wiener space based on an Ornstein-Uhlenbeck operator , 1992 .
[21] Nicolai V. Krylov,et al. On Lp-theory of stochastic partial di6erential equations in the whole space , 1996 .
[22] Xicheng Zhang. Lp-Theory of semi-linear SPDEs on general measure spaces and applications , 2006 .
[23] B. Rozovskii. Stochastic Evolution Systems , 1990 .
[24] calculus for submarkovian generators , 2003 .
[25] Kyeong-Hun Kim. Sobolev space theory of SPDEs with continuous or measurable leading coefficients , 2009 .
[26] T. Kurtz,et al. Stochastic equations in infinite dimensions , 2006 .
[27] Jan van Neerven,et al. Stochastic maximal Lp-regularity , 2010, 1004.1309.
[28] X. Duong,et al. Bounded holomorphic functional calculus for non-divergence form differential operators , 2002, Differential and Integral Equations.
[29] P. Kunstmann. H∞-calculus for the Stokes operator on unbounded domains , 2008 .
[30] Herbert Amann,et al. Nonhomogeneous Linear and Quasilinear Elliptic and Parabolic Boundary Value Problems , 1993 .
[31] R. Manthey,et al. Stochastic evolution equations in , 1999 .
[32] M. Veraar. Continuous local martingales and stochastic integration in UMD Banach spaces , 2007 .
[33] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[34] Joram Lindenstrauss. Classical Banach Spaces II: Function Spaces , 1979 .
[35] Xicheng Zhang,et al. Stochastic Volterra Equations in Banach Spaces and Stochastic Partial Differential Equations , 2008, 0812.0834.
[36] N. Krylov,et al. AW2n-theory of the Dirichlet problem for SPDEs in general smooth domains , 1994 .
[37] O. Kallenberg. Foundations of Modern Probability , 2021, Probability Theory and Stochastic Modelling.
[38] L. Weis,et al. Erratum to: Perturbation and interpolation theorems for the H∞-calculus with applications to differential operators , 2013, Mathematische Annalen.
[39] D. Ocone. Stochastic evolution equations. Linear Theory and Applications to Nonlinear Filtering , 1994 .
[40] Matthias Hieber,et al. Muckenhoupt weights and maximal Lp-regularity , 2003 .
[41] H. Amann,et al. Maximal Regularity for Nonautonomous Evolution Equations , 2004 .
[42] Z. Brzeźniak,et al. Space-time regularity for linear stochastic evolution equations driven by spatially homogeneous noise , 2003 .
[43] N. Krylov. SPDEs in $L_q( ( 0,\tau ] , L_p)$ Spaces , 2000 .
[44] H. Triebel. Interpolation Theory, Function Spaces, Differential Operators , 1978 .
[45] R. Nagel,et al. One-parameter semigroups for linear evolution equations , 1999 .
[46] Hantaek Bae,et al. On the Navier-Stokes equations , 2009 .
[47] H. Sohr,et al. The Navier-Stokes Equations: An Elementary Functional Analytic Approach , 2012 .
[48] M. Veraar,et al. Stochastic evolution equations in UMD Banach spaces , 2008, 0804.0932.
[49] L. Asimow. Interpolation in Banach spaces , 1979 .
[50] N. Krylov. A BRIEF OVERVIEW OF THE Lp-THEORY OF SPDES , 2008 .
[51] G. Pisier. Probabilistic methods in the geometry of Banach spaces , 1986 .
[52] Rico Zacher,et al. Maximal regularity of type Lp for abstract parabolic Volterra equations , 2005 .
[53] M. Veraar,et al. Is the stochastic parabolicity condition dependent on $p$ and $q$? , 2011, 1104.2768.
[54] Jorge A. León,et al. Stochastic evolution equations with random generators , 1998 .
[55] René Carmona,et al. Stochastic Partial Differential Equations: Six Perspectives , 1998 .
[56] D. Burkholder. Chapter 6 - Martingales and Singular Integrals in Banach Spaces , 2001 .
[57] The $H^{\infty}-$calculus and sums of closed operators , 2000, math/0010155.
[58] Bohdan Maslowski,et al. Stochastic nonlinear beam equations , 2005 .
[59] J. Prüss,et al. On operators with bounded imaginary powers in banach spaces , 1990 .
[60] Boris Rozovskii,et al. Stochastic Navier-Stokes Equations for Turbulent Flows , 2004, SIAM J. Math. Anal..
[61] Xicheng Zhang,et al. Regularities for semilinear stochastic partial differential equations , 2007 .
[62] Z. Brzeźniak. On stochastic convolution in banach spaces and applications , 1997 .
[63] G. Simonett,et al. $H_\infty$-calculus for elliptic operators with nonsmooth coefficients , 1997, Differential and Integral Equations.
[64] N. Kalton,et al. Perturbation and Interpolation Theorems for the H∞-Calculus with Applications to Differential Operators , 2006 .
[65] H∞-CALCULUS FOR SUBMARKOVIAN GENERATORS , 2003 .
[66] J. Diestel,et al. Absolutely Summing Operators , 1995 .
[67] Franco Flandoli,et al. STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS AND TURBULENCE , 1991 .
[68] H. Amann,et al. Bounded $H_\infty$-calculus for elliptic operators , 1994, Differential and Integral Equations.
[69] Lutz Weis,et al. Operator–valued Fourier multiplier theorems and maximal $L_p$-regularity , 2001 .
[70] Herbert Amann,et al. Linear and Quasilinear Parabolic Problems , 2019, Monographs in Mathematics.
[71] D. Bakry. Etude des transformations de Riesz dans les variétés riemanniennes à courbure de Ricci minorée , 1987 .
[72] Jan Seidler. Da Prato-Zabczyk's maximal inequality revisited. I. , 1993 .
[73] André Noll,et al. H∞-calculus for the Stokes operator on Lq-spaces , 2003 .
[74] L. Denis,et al. A General Analytical Result for Non-linear SPDE's and Applications , 2004 .
[75] Matthias Hieber,et al. SOME NEW THOUGHTS ON OLD RESULTS OF R , 2003 .
[76] G. Pisier. Martingales with values in uniformly convex spaces , 1975 .
[77] Robert Denk,et al. Fourier multipliers and problems of elliptic and parabolic type , 2003 .
[78] Yoshikazu Giga,et al. Solutions in Lr of the Navier-Stokes initial value problem , 1985 .
[79] R. Nagel,et al. Functional Analytic Methods for Evolution Equations , 2004 .
[80] N. Kalton,et al. The H ∞ −calculus and sums of closed operators , 2001 .
[81] J. Rosínski,et al. On the space of vector-valued functions integrable with respect to the white noise , 1980 .
[82] B. Roynette,et al. Quelques espaces fonctionnels associés à des processus gaussiens , 1993 .
[83] G. Simonett,et al. H1-CALCULUS FOR ELLIPTIC OPERATORS WITH NONSMOOTH COEFFICIENTS* , 2013 .
[84] J. Neerven,et al. Stochastic integration of functions with values in a Banach space , 2005 .
[85] Giovanni Dore,et al. On the closedness of the sum of two closed operators , 1987 .
[86] R. Strichartz. Analysis of the Laplacian on the Complete Riemannian Manifold , 1983 .
[87] M. C. Veraar,et al. Ito's formula in UMD Banach spaces and regularity of solutions of the Zakai equation , 2008 .
[88] J. Neerven. γ-Radonifying Operators: A Survey , 2010 .
[89] A. Mcintosh,et al. Functional calculi of second-order elliptic partial differential operators with bounded measurable coefficients , 1996 .
[90] J. Maas,et al. Boundedness of Riesz transforms for elliptic operators on abstract Wiener spaces , 2008, 0804.1432.
[91] Zdzisław Brzeźniak,et al. Stochastic partial differential equations in M-type 2 Banach spaces , 1995 .
[92] L. Weis. The H ∞ Holomorphic Functional Calculus for Sectorial Operators — a Survey , 2006 .
[93] S. Montgomery-Smith,et al. Chapter 26 – Interpolation of Banach Spaces , 2003 .
[94] J. Neerven,et al. Space-Time Regularity of Solutions of the Parabolic Stochastic Cauchy Problem , 2006 .
[95] Markus Haase,et al. The Functional Calculus for Sectorial Operators , 2006 .
[96] R. Mikulevicius. On Strong H21-Solutions of Stochastic Navier-Stokes Equation in a Bounded Domain , 2009, SIAM J. Math. Anal..
[97] F. Sukochev,et al. Schauder decompositions and multiplier theorems , 2000 .