Maximal Lp-Regularity for Stochastic Evolution Equations

We prove maximal L p -regularity for the stochastic evolution equation dU (t )+ AU (t) dt = F (t, U (t)) dt + B(t, U (t)) dWH (t) ,t ∈ (0 ,T ), U (0) = u0, under the assumption that A is a sectorial operator with a bounded H ∞ -calculus of angle less than 1 π on a space L q (O ,μ ). The driv- ing process WH is a cylindrical Brownian motion in an abstract Hilbert space H.F orp ∈ (2, ∞ )a nd q ∈ (2, ∞) and initial conditions u0 in the real interpolation space DA(1 − 1 ,p )w e prove existence of a unique strong solution with trajectories in L p (0 ,T ;D(A)) ∩ C((0 ,T );DA(1 − 1 ,p )), provided the nonlinearities F :( 0 ,T ) × D(A) → Lq(O ,μ )a ndB :( 0 ,T ) × D(A) → γ(H,D(A 1 2 )) are of linear growth and Lipschitz continuous in their second variables with small enough Lipschitz constants. Extensions to the case where A is an adapted operator-valued process are considered as well. Vari- ous applications to stochastic partial differential equations are worked out in detail. These include higher-order and time-dependent parabolic equations and the Navier-Stokes equation on a smooth bounded domain O⊆ R d with d ≥ 2. For the latter, the existence of a unique strong local solution with values in (H 1,q (O)) d is shown.

[1]  H. Amann,et al.  BOUNDED R00-CALCULUS FOR ELLIPTIC OPERATORS , 2013 .

[2]  Mark Veraar,et al.  A note on maximal estimates for stochastic convolutions , 2010, 1004.5061.

[3]  F. Flandoli Dirichlet boundary value problem for stochastic parabolic equations: compatibility relations and regularity of solutions , 1990 .

[4]  Boris Rozovskii,et al.  A Note on Krylov's $L_p$-Theory for Systems of SPDEs , 2001 .

[5]  E. Lenglart,et al.  Relation de domination entre deux processus , 1977 .

[6]  Simona Fornaro,et al.  -maximal Regularity for Non-autonomous Evolution Equations , 2022 .

[7]  Yoshikazu Giga,et al.  Domains of fractional powers of the Stokes operator in Lr spaces , 1985 .

[8]  D. Nualart The Malliavin Calculus and Related Topics , 1995 .

[9]  Daisuke Fujiwara,et al.  An L_r-theorem of the Helmholtz decomposition of vector fields , 1977 .

[10]  H. Triebel Theory Of Function Spaces , 1983 .

[11]  N. Krylov On the Foundation of the Lp-Theory of Stochastic Partial Differential Equations , 2005 .

[12]  Derek W. Robinson,et al.  Semigroup Kernels, Poisson Bounds, and Holomorphic Functional Calculus , 1996 .

[13]  L. Weis,et al.  Maximal Lp-regularity for Parabolic Equations, Fourier Multiplier Theorems and $H^\infty$-functional Calculus , 2004 .

[14]  B. Goldys,et al.  Generalized Ornstein–Uhlenbeck Semigroups: Littlewood–Paley–Stein Inequalities and the P. A. Meyer Equivalence of Norms , 2001 .

[15]  乔花玲,et al.  关于Semigroups of Linear Operators and Applications to Partial Differential Equations的两个注解 , 2003 .

[16]  Lamberto Cattabriga,et al.  Su un problema al contorno relativo al sistema di equazioni di Stokes , 1961 .

[17]  M. Veraar,et al.  On Besov regularity of Brownian motions in infinite dimensions , 2008, 0801.2959.

[18]  P. Kunstmann Navier-stokes equations on unbounded domains with rough initial data , 2010 .

[19]  A. Rhandi,et al.  The domain of the Ornstein-Uhlenbeck operator on an $L^p$-space with invariant measure , 2002 .

[20]  I. Shigekawa Sobolev spaces over the Wiener space based on an Ornstein-Uhlenbeck operator , 1992 .

[21]  Nicolai V. Krylov,et al.  On Lp-theory of stochastic partial di6erential equations in the whole space , 1996 .

[22]  Xicheng Zhang Lp-Theory of semi-linear SPDEs on general measure spaces and applications , 2006 .

[23]  B. Rozovskii Stochastic Evolution Systems , 1990 .

[24]  calculus for submarkovian generators , 2003 .

[25]  Kyeong-Hun Kim Sobolev space theory of SPDEs with continuous or measurable leading coefficients , 2009 .

[26]  T. Kurtz,et al.  Stochastic equations in infinite dimensions , 2006 .

[27]  Jan van Neerven,et al.  Stochastic maximal Lp-regularity , 2010, 1004.1309.

[28]  X. Duong,et al.  Bounded holomorphic functional calculus for non-divergence form differential operators , 2002, Differential and Integral Equations.

[29]  P. Kunstmann H∞-calculus for the Stokes operator on unbounded domains , 2008 .

[30]  Herbert Amann,et al.  Nonhomogeneous Linear and Quasilinear Elliptic and Parabolic Boundary Value Problems , 1993 .

[31]  R. Manthey,et al.  Stochastic evolution equations in , 1999 .

[32]  M. Veraar Continuous local martingales and stochastic integration in UMD Banach spaces , 2007 .

[33]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[34]  Joram Lindenstrauss Classical Banach Spaces II: Function Spaces , 1979 .

[35]  Xicheng Zhang,et al.  Stochastic Volterra Equations in Banach Spaces and Stochastic Partial Differential Equations , 2008, 0812.0834.

[36]  N. Krylov,et al.  AW2n-theory of the Dirichlet problem for SPDEs in general smooth domains , 1994 .

[37]  O. Kallenberg Foundations of Modern Probability , 2021, Probability Theory and Stochastic Modelling.

[38]  L. Weis,et al.  Erratum to: Perturbation and interpolation theorems for the H∞-calculus with applications to differential operators , 2013, Mathematische Annalen.

[39]  D. Ocone Stochastic evolution equations. Linear Theory and Applications to Nonlinear Filtering , 1994 .

[40]  Matthias Hieber,et al.  Muckenhoupt weights and maximal Lp-regularity , 2003 .

[41]  H. Amann,et al.  Maximal Regularity for Nonautonomous Evolution Equations , 2004 .

[42]  Z. Brzeźniak,et al.  Space-time regularity for linear stochastic evolution equations driven by spatially homogeneous noise , 2003 .

[43]  N. Krylov SPDEs in $L_q( ( 0,\tau ] , L_p)$ Spaces , 2000 .

[44]  H. Triebel Interpolation Theory, Function Spaces, Differential Operators , 1978 .

[45]  R. Nagel,et al.  One-parameter semigroups for linear evolution equations , 1999 .

[46]  Hantaek Bae,et al.  On the Navier-Stokes equations , 2009 .

[47]  H. Sohr,et al.  The Navier-Stokes Equations: An Elementary Functional Analytic Approach , 2012 .

[48]  M. Veraar,et al.  Stochastic evolution equations in UMD Banach spaces , 2008, 0804.0932.

[49]  L. Asimow Interpolation in Banach spaces , 1979 .

[50]  N. Krylov A BRIEF OVERVIEW OF THE Lp-THEORY OF SPDES , 2008 .

[51]  G. Pisier Probabilistic methods in the geometry of Banach spaces , 1986 .

[52]  Rico Zacher,et al.  Maximal regularity of type Lp for abstract parabolic Volterra equations , 2005 .

[53]  M. Veraar,et al.  Is the stochastic parabolicity condition dependent on $p$ and $q$? , 2011, 1104.2768.

[54]  Jorge A. León,et al.  Stochastic evolution equations with random generators , 1998 .

[55]  René Carmona,et al.  Stochastic Partial Differential Equations: Six Perspectives , 1998 .

[56]  D. Burkholder Chapter 6 - Martingales and Singular Integrals in Banach Spaces , 2001 .

[57]  The $H^{\infty}-$calculus and sums of closed operators , 2000, math/0010155.

[58]  Bohdan Maslowski,et al.  Stochastic nonlinear beam equations , 2005 .

[59]  J. Prüss,et al.  On operators with bounded imaginary powers in banach spaces , 1990 .

[60]  Boris Rozovskii,et al.  Stochastic Navier-Stokes Equations for Turbulent Flows , 2004, SIAM J. Math. Anal..

[61]  Xicheng Zhang,et al.  Regularities for semilinear stochastic partial differential equations , 2007 .

[62]  Z. Brzeźniak On stochastic convolution in banach spaces and applications , 1997 .

[63]  G. Simonett,et al.  $H_\infty$-calculus for elliptic operators with nonsmooth coefficients , 1997, Differential and Integral Equations.

[64]  N. Kalton,et al.  Perturbation and Interpolation Theorems for the H∞-Calculus with Applications to Differential Operators , 2006 .

[65]  H∞-CALCULUS FOR SUBMARKOVIAN GENERATORS , 2003 .

[66]  J. Diestel,et al.  Absolutely Summing Operators , 1995 .

[67]  Franco Flandoli,et al.  STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS AND TURBULENCE , 1991 .

[68]  H. Amann,et al.  Bounded $H_\infty$-calculus for elliptic operators , 1994, Differential and Integral Equations.

[69]  Lutz Weis,et al.  Operator–valued Fourier multiplier theorems and maximal $L_p$-regularity , 2001 .

[70]  Herbert Amann,et al.  Linear and Quasilinear Parabolic Problems , 2019, Monographs in Mathematics.

[71]  D. Bakry Etude des transformations de Riesz dans les variétés riemanniennes à courbure de Ricci minorée , 1987 .

[72]  Jan Seidler Da Prato-Zabczyk's maximal inequality revisited. I. , 1993 .

[73]  André Noll,et al.  H∞-calculus for the Stokes operator on Lq-spaces , 2003 .

[74]  L. Denis,et al.  A General Analytical Result for Non-linear SPDE's and Applications , 2004 .

[75]  Matthias Hieber,et al.  SOME NEW THOUGHTS ON OLD RESULTS OF R , 2003 .

[76]  G. Pisier Martingales with values in uniformly convex spaces , 1975 .

[77]  Robert Denk,et al.  Fourier multipliers and problems of elliptic and parabolic type , 2003 .

[78]  Yoshikazu Giga,et al.  Solutions in Lr of the Navier-Stokes initial value problem , 1985 .

[79]  R. Nagel,et al.  Functional Analytic Methods for Evolution Equations , 2004 .

[80]  N. Kalton,et al.  The H ∞ −calculus and sums of closed operators , 2001 .

[81]  J. Rosínski,et al.  On the space of vector-valued functions integrable with respect to the white noise , 1980 .

[82]  B. Roynette,et al.  Quelques espaces fonctionnels associés à des processus gaussiens , 1993 .

[83]  G. Simonett,et al.  H1-CALCULUS FOR ELLIPTIC OPERATORS WITH NONSMOOTH COEFFICIENTS* , 2013 .

[84]  J. Neerven,et al.  Stochastic integration of functions with values in a Banach space , 2005 .

[85]  Giovanni Dore,et al.  On the closedness of the sum of two closed operators , 1987 .

[86]  R. Strichartz Analysis of the Laplacian on the Complete Riemannian Manifold , 1983 .

[87]  M. C. Veraar,et al.  Ito's formula in UMD Banach spaces and regularity of solutions of the Zakai equation , 2008 .

[88]  J. Neerven γ-Radonifying Operators: A Survey , 2010 .

[89]  A. Mcintosh,et al.  Functional calculi of second-order elliptic partial differential operators with bounded measurable coefficients , 1996 .

[90]  J. Maas,et al.  Boundedness of Riesz transforms for elliptic operators on abstract Wiener spaces , 2008, 0804.1432.

[91]  Zdzisław Brzeźniak,et al.  Stochastic partial differential equations in M-type 2 Banach spaces , 1995 .

[92]  L. Weis The H ∞ Holomorphic Functional Calculus for Sectorial Operators — a Survey , 2006 .

[93]  S. Montgomery-Smith,et al.  Chapter 26 – Interpolation of Banach Spaces , 2003 .

[94]  J. Neerven,et al.  Space-Time Regularity of Solutions of the Parabolic Stochastic Cauchy Problem , 2006 .

[95]  Markus Haase,et al.  The Functional Calculus for Sectorial Operators , 2006 .

[96]  R. Mikulevicius On Strong H21-Solutions of Stochastic Navier-Stokes Equation in a Bounded Domain , 2009, SIAM J. Math. Anal..

[97]  F. Sukochev,et al.  Schauder decompositions and multiplier theorems , 2000 .