Elliptic problems in variable exponent spaces

In this paper we study a nonlinear elliptic equation involving p(x)-growth conditions on a bounded domain having cylindrical symmetry. We establish existence and multiplicity results using as main tools the mountain pass theorem of Ambosetti and Rabinowitz and Ekeland's variational principle.

[1]  I. Ekeland On the variational principle , 1974 .

[2]  V. Zhikov,et al.  AVERAGING OF FUNCTIONALS OF THE CALCULUS OF VARIATIONS AND ELASTICITY THEORY , 1987 .

[3]  T C Halsey Electrorheological fluids. , 1992, Science.

[4]  D. E. Edmunds,et al.  On Lp(x)norms , 1999, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[5]  P. Rabinowitz,et al.  Dual variational methods in critical point theory and applications , 1973 .

[6]  W. M. Winslow Induced Fibration of Suspensions , 1949 .

[7]  Yongqiang Fu,et al.  Existence of solutions for p(x)-Laplacian problems on a bounded domain , 2005 .

[8]  Haim Brezis,et al.  Positive solutions of nonlinear elliptic equations involving critical sobolev exponents , 1983 .

[9]  Mihai Mihailescu,et al.  A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids , 2006, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[10]  Julian Musielak,et al.  Orlicz Spaces and Modular Spaces , 1983 .

[11]  Jiří Rákosník,et al.  Density of smooth functions in Wk, p(x) (Ω) , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[12]  Jiří Rákosník,et al.  On spaces $L^{p(x)}$ and $W^{k, p(x)}$ , 1991 .

[13]  Wenzhi Wang Sobolev embeddings involving symmetry , 2006 .

[14]  S. Samko,et al.  Weighted Sobolev theorem with variable exponent for spatial and spherical potential operators , 2005 .

[15]  M. Růžička Flow of shear dependent electrorheological fluids , 1999 .

[16]  J. Coron,et al.  On a nonlinear elliptic equation involving the critical sobolev exponent: The effect of the topology of the domain , 1988 .

[17]  C. O. Alves,et al.  Existence of Solutions for a Class of Problems in IR N Involving the p ( x )-Laplacian , 2005 .

[18]  Qihu Zhang,et al.  Existence of solutions for p(x) -Laplacian dirichlet problem , 2003 .

[19]  Jiří Rákosník,et al.  Sobolev embeddings with variable exponent , 2000 .

[20]  D. Edmunds,et al.  Sobolev Embeddings with Variable Exponent, II , 2002 .

[21]  Giuseppe Mingione,et al.  Regularity Results for a Class of Functionals with Non-Standard Growth , 2001 .

[22]  M. Ruzicka,et al.  Electrorheological Fluids: Modeling and Mathematical Theory , 2000 .