Optical Study of p-Doping in GaAs Nanowires for Low-Threshold and High-Yield Lasing.

Semiconductor nanowires suffer from significant non-radiative surface recombination; however, heavy p-type doping has proven to be a viable option to increase the radiative recombination rate and, hence, quantum efficiency of emission, allowing the demonstration of room-temperature lasing. Using a large-scale optical technique, we have studied Zn-doped GaAs nanowires to understand and quantify the effect of doping on growth and lasing properties. We measure the non-radiative recombination rate ( knr) to be (0.14 ± 0.04) ps-1 by modeling the internal quantum efficiency (IQE) as a function of doping level. By applying a correlative method, we identify doping and nanowire length as key controllable parameters determining lasing behavior, with reliable room-temperature lasing occurring for p ≳ 3 × 1018 cm-3 and lengths of ≳4 μm. We report a best-in-class core-only near-infrared nanowire lasing threshold of ∼10 μJ cm-2, and using a data-led filtering step, we present a method to simply identify subsets of nanowires with over 90% lasing yield.

[1]  Dirk Englund,et al.  Deep learning with coherent nanophotonic circuits , 2017, 2017 Fifth Berkeley Symposium on Energy Efficient Electronic Systems & Steep Transistors Workshop (E3S).

[2]  X. Liu,et al.  Wavelength Tunable CdSe Nanowire Lasers Based on the Absorption‐Emission‐Absorption Process , 2012, Advanced materials.

[3]  D. Thompson,et al.  GaAs core--shell nanowires for photovoltaic applications. , 2009, Nano letters.

[4]  Chennupati Jagadish,et al.  Modal refractive index measurement in nanowire lasers—a correlative approach , 2018, Nano Futures.

[5]  M. Notomi,et al.  Nanomanipulating and Tuning Ultraviolet ZnO-Nanowire-Induced Photonic Crystal Nanocavities , 2017 .

[6]  M. Borgström,et al.  Study of carrier concentration in single InP nanowires by luminescence and Hall measurements , 2015, Nanotechnology.

[7]  Yasuhiko Arakawa,et al.  Room-temperature lasing in a single nanowire with quantum dots , 2015 .

[8]  Dan Dalacu,et al.  Bright Single InAsP Quantum Dots at Telecom Wavelengths in Position-Controlled InP Nanowires: The Role of the Photonic Waveguide. , 2018, Nano letters.

[9]  M. Wang,et al.  High-Responsivity Photodetection by a Self-Catalyzed Phase-Pure p-GaAs Nanowire. , 2018, Small.

[10]  Kelly P. Knutsen,et al.  Single gallium nitride nanowire lasers , 2002, Nature materials.

[11]  Chennupati Jagadish,et al.  Electron mobilities approaching bulk limits in "surface-free" GaAs nanowires. , 2014, Nano letters.

[12]  Matt Law,et al.  Nanoribbon Waveguides for Subwavelength Photonics Integration , 2004, Science.

[13]  Yiying Wu,et al.  Room-Temperature Ultraviolet Nanowire Nanolasers , 2001, Science.

[14]  K. Dick,et al.  Precursor evaluation for in situ InP nanowire doping , 2008, Nanotechnology.

[15]  Chennupati Jagadish,et al.  Design and Room-Temperature Operation of GaAs/AlGaAs Multiple Quantum Well Nanowire Lasers. , 2016, Nano letters.

[16]  J. Wallentin,et al.  Nanobeam X-ray Fluorescence Dopant Mapping Reveals Dynamics of in Situ Zn-Doping in Nanowires. , 2018, Nano letters.

[17]  Xiang Zhang,et al.  Multiplexed and electrically modulated plasmon laser circuit. , 2012, Nano letters.

[18]  J. Etheridge,et al.  Enhanced minority carrier lifetimes in GaAs/AlGaAs core-shell nanowires through shell growth optimization. , 2013, Nano letters.

[19]  H. Tan,et al.  Optically pumped room-temperature GaAs nanowire lasers , 2013, Nature Photonics.

[20]  Anna Fontcuberta i Morral,et al.  Modulation doping of GaAs/AlGaAs core-shell nanowires with effective defect passivation and high electron mobility. , 2015, Nano letters.

[21]  Y. J. Lee,et al.  Surface passivation of III-V compound semiconductors using atomic-layer-deposition grown Al2O3 , 2005 .

[22]  Yong Ding,et al.  Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers. , 2008, Nature materials.

[23]  Charles M Lieber,et al.  Lasing in single cadmium sulfide nanowire optical cavities. , 2005, Nano letters.

[24]  Zhiming M. Wang,et al.  Defect-Free Self-Catalyzed GaAs/GaAsP Nanowire Quantum Dots Grown on Silicon Substrate. , 2016, Nano letters.

[25]  Chennupati Jagadish,et al.  Long minority carrier lifetime in Au-catalyzed GaAs/AlxGa1−xAs core-shell nanowires , 2012 .

[26]  M. Ek,et al.  Changes in contact angle of seed particle correlated with increased zincblende formation in doped InP nanowires. , 2010, Nano letters.

[27]  Carsten Ronning,et al.  Review on the dynamics of semiconductor nanowire lasers , 2018 .

[28]  R. LaPierre,et al.  Effects of Be doping on InP nanowire growth mechanisms , 2012 .

[29]  L. Lauhon,et al.  Tuning Lasing Emission toward Long Wavelengths in GaAs-(In,Al)GaAs Core-Multishell Nanowires. , 2018, Nano letters.

[30]  Philippe Caroff,et al.  Doping-enhanced radiative efficiency enables lasing in unpassivated GaAs nanowires , 2016, Nature Communications.

[31]  Xin Yan,et al.  Low-threshold room-temperature AlGaAs/GaAs nanowire/single-quantum-well heterostructure laser , 2017 .

[32]  Chennupati Jagadish,et al.  Twin-free uniform epitaxial GaAs nanowires grown by a two-temperature process. , 2007, Nano letters.

[33]  M. Ek,et al.  GaAs/AlGaAs heterostructure nanowires studied by cathodoluminescence , 2014, Nano Research.

[34]  Chennupati Jagadish,et al.  Engineering the Photoresponse of InAs Nanowires. , 2017, ACS applied materials & interfaces.

[35]  Shui-Tong Lee,et al.  Lasing in ZnS nanowires grown on anodic aluminum oxide templates , 2004 .

[36]  F. L. Terry,et al.  Hydrogen sulfide plasma passivation of gallium arsenide , 1992 .

[37]  Charles M. Lieber,et al.  Semiconductor nanowire laser and nanowire waveguide electro-optic modulators , 2005 .

[38]  H. Jiang,et al.  Strong surface passivation of GaAs nanowires with ultrathin InP and GaP capping layers , 2014 .

[39]  Mahendra K. Sunkara,et al.  Near-infrared semiconductor subwavelength-wire lasers , 2006 .

[40]  H. Lipsanen,et al.  Effects of Zn doping on GaAs nanowires , 2014, 14th IEEE International Conference on Nanotechnology.

[41]  Chennupati Jagadish,et al.  Large-Scale Statistics for Threshold Optimization of Optically Pumped Nanowire Lasers. , 2017, Nano letters.

[42]  Richard K. Ahrenkiel,et al.  Auger recombination in heavily carbon-doped GaAs , 2001 .

[43]  R. J. Nelson,et al.  Minority‐carrier lifetimes and internal quantum efficiency of surface‐free GaAs , 1978 .

[44]  Chennupati Jagadish,et al.  An Ultrafast Switchable Terahertz Polarization Modulator Based on III-V Semiconductor Nanowires. , 2017, Nano letters.

[45]  L. Chernyak,et al.  Electrically pumped waveguide lasing from ZnO nanowires. , 2011, Nature nanotechnology.

[46]  R. LaPierre,et al.  Doping assessment in GaAs nanowires , 2018, Nanotechnology.

[47]  V. Ulin,et al.  Nitride surface passivation of GaAs nanowires: impact on surface state density. , 2015, Nano letters.

[48]  M. Notomi,et al.  Subwavelength Nanowire Lasers on a Silicon Photonic Crystal Operating at Telecom Wavelengths , 2017 .

[49]  M. Borgström,et al.  Electrical and optical evaluation of n-type doping in InxGa(1−x)P nanowires , 2018, Nanotechnology.

[50]  M. Borgström,et al.  Time-resolved photoluminescence characterization of GaAs nanowire arrays on native substrate , 2017, Nanotechnology.

[51]  G. Abstreiter,et al.  Lasing from individual GaAs-AlGaAs core-shell nanowires up to room temperature , 2013, Nature Communications.

[52]  L. Sorba,et al.  Length distributions of Au-catalyzed and In-catalyzed InAs nanowires , 2016, Nanotechnology.

[53]  Lorenzo Pavesi,et al.  A Model for the Zn Diffusion in Gaas by a Photoluminescence Study , 1991 .

[54]  J. Collet Solid-State Electronics , 1963, Nature.

[55]  Chennupati Jagadish,et al.  Carrier lifetime and mobility enhancement in nearly defect-free core-shell nanowires measured using time-resolved terahertz spectroscopy. , 2009, Nano letters.

[56]  Robert Mertens,et al.  Band‐gap narrowing in highly doped n‐ and p‐type GaAs studied by photoluminescence spectroscopy , 1989 .

[57]  C. Chang-Hasnain,et al.  Tailoring the optical characteristics of microsized InP nanoneedles directly grown on silicon. , 2014, Nano letters.

[58]  G. Abstreiter,et al.  Coaxial GaAs-AlGaAs core-multishell nanowire lasers with epitaxial gain control , 2016 .

[59]  Chennupati Jagadish,et al.  Electronic properties of GaAs, InAs and InP nanowires studied by terahertz spectroscopy , 2013, Nanotechnology.

[60]  C. Soci,et al.  Nanowire Lasers , 2018, 1809.01328.