A highly active titanium dioxide based visible-light photocatalyst with nonmetal doping and plasmonic metal decoration.

A sandwich-structured photocatalyst shows an excellent performance in degradation reactions of a number of organic compounds under UV, visible light, and direct sunlight (see picture). The catalyst was synthesized by a combination of nonmetal doping and plasmonic metal decoration of TiO2 nanocrystals, which improves visible-light activity and enhances light harvesting and charge separation, respectively.

[1]  S. Cronin,et al.  Plasmon resonant enhancement of photocatalytic water splitting under visible illumination. , 2011, Nano letters.

[2]  Xiaobo Chen,et al.  Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals , 2011, Science.

[3]  Avelino Corma,et al.  Titania supported gold nanoparticles as photocatalyst. , 2011, Physical chemistry chemical physics : PCCP.

[4]  Ilkeun Lee,et al.  Encapsulation of supported Pt nanoparticles with mesoporous silica for increased catalyst stability , 2011 .

[5]  Zhenda Lu,et al.  Self-assembly and photocatalysis of mesoporous TiO2 nanocrystal clusters , 2011 .

[6]  Miaomiao Ye,et al.  Self-assembly of superparamagnetic magnetite particles into peapod-like structures and their application in optical modulation , 2010 .

[7]  Ilkeun Lee,et al.  Surface‐Protected Etching of Mesoporous Oxide Shells for the Stabilization of Metal Nanocatalysts , 2010 .

[8]  Zhong-lin Chen,et al.  Magnetically recoverable core-shell nanocomposites with enhanced photocatalytic activity. , 2010, Chemistry.

[9]  Hiroaki Tada,et al.  Self-assembled heterosupramolecular visible light photocatalyst consisting of gold nanoparticle-loaded titanium(IV) dioxide and surfactant. , 2010, Journal of the American Chemical Society.

[10]  C. Hung,et al.  Characterization of N,C-codoped TiO2 films prepared by reactive DC magnetron sputtering , 2009 .

[11]  A. Manivannan,et al.  Origin of photocatalytic activity of nitrogen-doped TiO2 nanobelts. , 2009, Journal of the American Chemical Society.

[12]  Jinlong Zhang,et al.  ENHANCED PHOTOCATALYTIC ACTIVITY OF NITROGEN-DOPED TITANIA BY DEPOSITED WITH GOLD , 2009 .

[13]  T. Lee,et al.  The effects of sonification and TiO2 deposition on the micro-characteristics of the thermally treated SiO2/TiO2 spherical core-shell particles for photo-catalysis of methyl orange , 2008 .

[14]  Tierui Zhang,et al.  Core-satellite nanocomposite catalysts protected by a porous silica shell: controllable reactivity, high stability, and magnetic recyclability. , 2008, Angewandte Chemie.

[15]  A. V. Emeline,et al.  Visible-Light-Active Titania Photocatalysts: The Case of N-Doped s—Properties and Some Fundamental Issues , 2008 .

[16]  Akira Nambu,et al.  Au <--> N synergy and N-doping of metal oxide-based photocatalysts. , 2008, Journal of the American Chemical Society.

[17]  Zhichun Si,et al.  SOLAR PHOTOCATALYTIC DEGRADATION OF METHYLENE BLUE IN CARBON-DOPED TIO2 NANOPARTICLES SUSPENSION , 2008 .

[18]  J. Rodríguez,et al.  N Doping of Rutile TiO2 (110) Surface. A Theoretical DFT Study , 2008 .

[19]  A. Maldotti,et al.  Preparation, Characterisation, and Photocatalytic Behaviour of Co-TiO2 with Visible Light Response , 2008 .

[20]  Carsten Rockstuhl,et al.  A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide. , 2008, Journal of the American Chemical Society.

[21]  A. Furube,et al.  Ultrafast plasmon-induced electron transfer from gold nanodots into TiO2 nanoparticles. , 2007, Journal of the American Chemical Society.

[22]  M. Dettin,et al.  Novel immobilizations of an adhesion peptide on the TiO2 surface: An XPS investigation , 2007 .

[23]  Z. Zou,et al.  Low temperature preparation and visible light photocatalytic activity of mesoporous carbon-doped crystalline TiO2 , 2007 .

[24]  J. Lian,et al.  IR and XPS investigation of visible-light photocatalysis—Nitrogen-carbon-doped TiO 2 film , 2006 .

[25]  G. Pacchioni,et al.  Origin of photoactivity of nitrogen-doped titanium dioxide under visible light. , 2006, Journal of the American Chemical Society.

[26]  E. Fujita,et al.  N doping of TiO2(110): photoemission and density-functional studies. , 2006, The Journal of chemical physics.

[27]  H. Zeng,et al.  Preparation of Monodisperse Au/TiO 2 Nanocatalysts via Self-Assembly , 2006 .

[28]  Ulrike Diebold,et al.  Influence of nitrogen doping on the defect formation and surface properties of TiO2 rutile and anatase. , 2006, Physical review letters.

[29]  K. Yamashita,et al.  Theoretical study of the structure and optical properties of carbon-doped rutile and anatase titanium oxides. , 2005, The Journal of chemical physics.

[30]  Oliver Diwald,et al.  Photochemical Activity of Nitrogen-Doped Rutile TiO2(110) in Visible Light , 2004 .

[31]  E. Wolf,et al.  Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the Fermi level equilibration. , 2004, Journal of the American Chemical Society.

[32]  S. Matsuzawa,et al.  Preparation of a visible light-responsive photocatalyst from a complex of Ti4+ with a nitrogen-containing ligand , 2004 .

[33]  H. Kisch,et al.  Tageslicht‐Photokatalyse durch Kohlenstoff‐modifiziertes Titandioxid , 2003 .

[34]  H. Kisch,et al.  Daylight photocatalysis by carbon-modified titanium dioxide. , 2003, Angewandte Chemie.

[35]  W. Lee,et al.  Preparation of Size-Controlled TiO2 Nanoparticles and Derivation of Optically Transparent Photocatalytic Films , 2003 .

[36]  Yuka Watanabe,et al.  Nitrogen-Concentration Dependence on Photocatalytic Activity of TiO2-xNx Powders , 2003 .

[37]  Kimberly A. Gray,et al.  Explaining the Enhanced Photocatalytic Activity of Degussa P25 Mixed-Phase TiO2 Using EPR , 2003 .

[38]  W. Ingler,et al.  Efficient Photochemical Water Splitting by a Chemically Modified n-TiO2 , 2002, Science.

[39]  R. Asahi,et al.  Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides , 2001, Science.

[40]  Jackie Y. Ying,et al.  Photocatalytic decomposition of halogenated organics over nanocrystalline titania , 1997 .

[41]  T. Madey,et al.  TiO2 by XPS , 1996 .

[42]  Wonyong Choi,et al.  The Role of Metal Ion Dopants in Quantum-Sized TiO2: Correlation between Photoreactivity and Charge Carrier Recombination Dynamics , 1994 .

[43]  Harland G. Tompkins,et al.  Titanium nitride oxidation chemistry: An x‐ray photoelectron spectroscopy study , 1992 .

[44]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[45]  M. Anpo,et al.  Photocatalytic hydrogenation of propyne with water on small-particle titania: size quantization effects and reaction intermediates , 1987 .

[46]  Shinri Sato,et al.  Photocatalytic activity of NOx-doped TiO2 in the visible light region , 1986 .

[47]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[48]  W. Stöber,et al.  Controlled growth of monodisperse silica spheres in the micron size range , 1968 .