Proper Orthogonal Decomposition Surrogate Models for Nonlinear Dynamical Systems: Error Estimates and Suboptimal Control
暂无分享,去创建一个
[1] Tosio Kato. Perturbation theory for linear operators , 1966 .
[2] F. Browder. Nonlinear functional analysis , 1970 .
[3] M. Reed. Methods of Modern Mathematical Physics. I: Functional Analysis , 1972 .
[4] J. Craggs. Applied Mathematical Sciences , 1973 .
[5] R. Cuninghame-Green,et al. Applied Linear Algebra , 1979 .
[6] L. Sirovich. Turbulence and the dynamics of coherent structures. I. Coherent structures , 1987 .
[7] L. Sirovich. Turbulence and the dynamics of coherent structures. III. Dynamics and scaling , 1987 .
[8] Nadine Aubry,et al. The dynamics of coherent structures in the wall region of a turbulent boundary layer , 1988, Journal of Fluid Mechanics.
[9] R. Temam. Infinite Dimensional Dynamical Systems in Mechanics and Physics Springer Verlag , 1993 .
[10] C. DeWitt-Morette,et al. Mathematical Analysis and Numerical Methods for Science and Technology , 1990 .
[11] E. Bänsch. An adaptive finite-element strategy for the three-dimensional time-dependent Navier-Stokes equations , 1991 .
[12] Jacques-Louis Lions,et al. Mathematical Analysis and Numerical Methods for Science and Technology: Volume 5 Evolution Problems I , 1992 .
[13] Hermann F. Fasel,et al. Dynamics of three-dimensional coherent structures in a flat-plate boundary layer , 1994, Journal of Fluid Mechanics.
[14] R. Rannacher,et al. Benchmark Computations of Laminar Flow Around a Cylinder , 1996 .
[15] Ernst-Heinrich Hirschel. Flow Simulation with High-Performance Computers II: DFG Priority Research Programme Results 1993–1995 , 1996 .
[16] Ernst Heinrich Hirschel,et al. Flow Simulation with High-Performance Computers II , 1996 .
[17] Rolf Rannacher,et al. ARTIFICIAL BOUNDARIES AND FLUX AND PRESSURE CONDITIONS FOR THE INCOMPRESSIBLE NAVIER–STOKES EQUATIONS , 1996 .
[18] G. Gerbeth,et al. Modelling of the isothermal melt flow due to rotating magnetic fields in crystal growth , 1997 .
[19] S. Shvartsman,et al. Nonlinear model reduction for control of distributed systems: A computer-assisted study , 1998 .
[20] S. Ravindran,et al. A Reduced Basis Method for Control Problems Governed by PDEs , 1998 .
[21] Karl Kunisch,et al. Control and estimation of distributed parameter systems , 1998 .
[22] Wr Graham,et al. OPTIMAL CONTROL OF VORTEX SHEDDING USING LOW-ORDER MODELS. PART I-OPEN-LOOP MODEL DEVELOPMENT , 1999 .
[23] K. Kunisch,et al. Control of the Burgers Equation by a Reduced-Order Approach Using Proper Orthogonal Decomposition , 1999 .
[24] Jerrold E. Marsden,et al. Empirical model reduction of controlled nonlinear systems , 1999, IFAC Proceedings Volumes.
[25] Karl Kunisch,et al. Three Control Methods for Time-Dependent Fluid Flow , 2000 .
[26] Rolf Rannacher,et al. Finite Element Methods for the Incompressible Navier-Stokes Equations , 2000 .
[27] Frank Stefani,et al. On the uniqueness of velocity reconstruction in conducting fluids from measurements of induced electromagnetic fields , 2000 .
[28] Harvey Thomas Banks,et al. Nondestructive evaluation using a reduced order computational methodology , 2000 .
[29] Rolf Rannacher,et al. Fundamental directions in mathematical fluid mechanics , 2000 .
[30] S. S. Ravindran,et al. Reduced-Order Adaptive Controllers for Fluid Flows Using POD , 2000, J. Sci. Comput..
[31] E. Sachs,et al. Trust-region proper orthogonal decomposition for flow control , 2000 .
[32] S. Volkwein. Boundary Control of the Burgers Equation: Optimality Conditions and Reduced-order Approach , 2001 .
[33] J. A. Atwell,et al. Reduced order controllers for Burgers' equation with a nonlinear observer , 2001 .
[34] Rolf Rannacher,et al. An optimal control approach to a posteriori error estimation in finite element methods , 2001, Acta Numerica.
[35] Karl Kunisch,et al. Second Order Methods for Optimal Control of Time-Dependent Fluid Flow , 2001, SIAM J. Control. Optim..
[36] K. Afanasiev,et al. Adaptive Control Of A Wake Flow Using Proper Orthogonal Decomposition1 , 2001 .
[37] Stefan Volkwein. Optimal Control of a Phase‐Field Model Using Proper Orthogonal Decomposition , 2001 .
[38] Stefan Volkwein,et al. Galerkin proper orthogonal decomposition methods for parabolic problems , 2001, Numerische Mathematik.
[39] S. Volkwein,et al. Nonlinear Boundary Control for the Heat Equation Utilizing Proper Orthogonal Decomposition , 2001 .
[40] H. Tran,et al. Modeling and control of physical processes using proper orthogonal decomposition , 2001 .
[41] Volker Schulz,et al. Fast Solution of Discretized Optimization Problems , 2001 .
[42] Stefan Volkwein,et al. Second-order conditions for boundary control problems of the Burgers equation , 2001 .
[43] D K Smith,et al. Numerical Optimization , 2001, J. Oper. Res. Soc..
[44] M. Hinze. Optimal and instantaneous control of the instationary Navier-Stokes equations , 2002 .
[45] Muruhan Rathinam,et al. Dynamic Iteration Using Reduced Order Models: A Method for Simulation of Large Scale Modular Systems , 2002, SIAM J. Numer. Anal..
[46] Stefan Volkwein,et al. Galerkin Proper Orthogonal Decomposition Methods for a General Equation in Fluid Dynamics , 2002, SIAM J. Numer. Anal..
[47] J. Peraire,et al. Balanced Model Reduction via the Proper Orthogonal Decomposition , 2002 .
[48] Stefan Volkwein,et al. Control of laser surface hardening by a reduced-order approach using proper orthogonal decomposition , 2003 .
[49] Marcus Meyer,et al. Efficient model reduction in non-linear dynamics using the Karhunen-Loève expansion and dual-weighted-residual methods , 2003 .
[50] Michael Hinze,et al. Error Estimates in Space and Time for Tracking-type Control of the Instationary Stokes System , 2003 .
[51] S. Volkwein,et al. Laser surface hardening using proper orthogonal decomposition for a threedimensional example , 2003 .
[52] Jean-Pierre Yvon,et al. Convergence Estimates of POD-Galerkin Methods for Parabolic Problems , 2003, System Modelling and Optimization.
[53] B. R. Noack,et al. A hierarchy of low-dimensional models for the transient and post-transient cylinder wake , 2003, Journal of Fluid Mechanics.
[54] Massimiliano Giona,et al. Modal reduction of PDE models by means of Snapshot Archetypes , 2003 .
[55] Michael Hinze,et al. Semidiscretization and error estimates for distributed control of the instationary Navier-Stokes equations , 2004, Numerische Mathematik.
[56] Lei Xie,et al. HJB-POD-Based Feedback Design for the Optimal Control of Evolution Problems , 2004, SIAM J. Appl. Dyn. Syst..
[57] Stefan Volkwein,et al. Numerical feedback controller design for PDE systems using model reduction: techniques and case studies , 2005 .
[58] Clarence W. Rowley,et al. Model Reduction for fluids, Using Balanced Proper Orthogonal Decomposition , 2005, Int. J. Bifurc. Chaos.
[59] Michael Hinze,et al. A Variational Discretization Concept in Control Constrained Optimization: The Linear-Quadratic Case , 2005, Comput. Optim. Appl..
[60] S. Volkwein,et al. Reduced order output feedback control design for PDE systems using proper orthogonal decomposition and nonlinear semidefinite programming , 2006 .
[61] Hamilton-Jacobi-Bellman equations.. Approximation of optimal controls for semilinear parabolic PDE by solving , .