Community‐Level Responses to Iron Availability in Open Ocean Plankton Ecosystems

Predicting responses of plankton to variations in essential nutrients is hampered by limited in situ measurements, a poor understanding of community composition, and the lack of reference gene catalogs for key taxa. Iron is a key driver of plankton dynamics and, therefore, of global biogeochemical cycles and climate. To assess the impact of iron availability on plankton communities, we explored the comprehensive bio‐oceanographic and bio‐omics data sets from Tara Oceans in the context of the iron products from two state‐of‐the‐art global scale biogeochemical models. We obtained novel information about adaptation and acclimation toward iron in a range of phytoplankton, including picocyanobacteria and diatoms, and identified whole subcommunities covarying with iron. Many of the observed global patterns were recapitulated in the Marquesas archipelago, where frequent plankton blooms are believed to be caused by natural iron fertilization, although they are not captured in large‐scale biogeochemical models. This work provides a proof of concept that integrative analyses, spanning from genes to ecosystems and viruses to zooplankton, can disentangle the complexity of plankton communities and can lead to more accurate formulations of resource bioavailability in biogeochemical models, thus improving our understanding of plankton resilience in a changing environment.

Luis Pedro Coelho | P. Bork | S. Sunagawa | E. Pelletier | J. Raes | J. Poulain | J. Weissenbach | E. Boss | O. Jaillon | P. Wincker | S. D’Aniello | H. Ogata | P. Hingamp | P. Testor | F. D’Ortenzio | V. Taillandier | H. Claustre | M. Follows | Alaguraj Veluchamy | S. Speich | S. Acinas | E. Martinez | Samuel Chaffron | N. Grimsley | G. Gorsky | M. Picheral | S. Gasparini | L. Stemmann | J. Romagnan | S. Pesant | Nicolas Maillet | M. Sieracki | J. Aury | A. Alberti | L. Guidi | F. Kokoszka | C. Lepoivre | Gipsi Lima-Mendez | Céline Dimier | S. Searson | S. Kandels-Lewis | C. Bowler | C. Vargas | D. Iudicone | F. Not | M. Sullivan | E. Karsenti | R. Sanges | A. Carratalà | J. Lukeš | A. Zingone | Eleonora Scalco | L. Tirichine | L. Caputi | A. Tanaka | S. Malviya | Flora Vincent | L. Bittner | L. Karp-Boss | Emilie Villar | J. Veselá | D. Eveillard | J. Uitz | C. Sardet | Mohammed-Amin Madoui | S. Roux | C. da Silva | U. Kržič | S. Colin | C. Lejeusne | M. Boccara | C. Brunet | E. Reynaud | Didier Velayoudon | Q. Carradec | A. Kirilovsky | Alexis Bertrand | J. Brum | F. Lombard | M. d’Alcalà | J. Jamet | M. Mazzocchi | A. Tagliabue | Tristan Biard | M. Lescot | Hugo Doré | L. Garczarek | Sheree Yau | M. Sprovieri | Jennifer R. Brum | Greta Busseni | Camille Trottier | Fabio Rocha Jimenez Vieira | J. J. Pierella Karlusich | P. Sordino | J. Paz-Yepes | Jennifer R Brum | Anne‐Sophie Benoiston | M. Néou | Marianna Del Core | S. Ramondenc | D. Salvagio Manta | É. Pelletier | G. Lima-Mendez | L. Karp‐Boss | Anne-Sophie Benoiston | Mario B. Néou | C. Dimier | J. P. Pierella Karlusich

[1]  Elizabeth L. Mann,et al.  Iron storage capacities and associated ferritin gene expression among marine diatoms , 2018 .

[2]  France Lam,et al.  Endocytosis-mediated siderophore uptake as a strategy for Fe acquisition in diatoms , 2018, Science Advances.

[3]  M. Brzezinski,et al.  Divergent gene expression among phytoplankton taxa in response to upwelling , 2018, bioRxiv.

[4]  Bogumil J. Karas,et al.  Carbonate-sensitive phytotransferrin controls high-affinity iron uptake in diatoms , 2018, Nature.

[5]  Martin Frank,et al.  The GEOTRACES Intermediate Data Product 2017 , 2018, Chemical Geology.

[6]  P. Bork,et al.  A global ocean atlas of eukaryotic genes , 2018, Nature Communications.

[7]  B. Satinsky,et al.  Ocean biogeochemistry modeled with emergent trait-based genomics , 2017, Science.

[8]  M. Brzezinski,et al.  Diatom Transcriptional and Physiological Responses to Changes in Iron Bioavailability across Ocean Provinces , 2017, Front. Mar. Sci..

[9]  Jun Wang,et al.  Quantitative microbiome profiling links gut community variation to microbial load , 2017, Nature.

[10]  S. Sander,et al.  Editorial: Organic Ligands—A Key Control on Trace Metal Biogeochemistry in the Ocean , 2017, Front. Mar. Sci..

[11]  Francisco M. Cornejo-Castillo,et al.  Viral to metazoan marine plankton nucleotide sequences from the Tara Oceans expedition , 2017, Scientific Data.

[12]  N. Cohen,et al.  Development of a molecular‐based index for assessing iron status in bloom‐forming pennate diatoms , 2017, Journal of phycology.

[13]  Pier Luigi Buttigieg,et al.  Modelling plankton ecosystems in the meta-omics era. Are we ready? , 2017, Marine genomics.

[14]  K. Johnson,et al.  The integral role of iron in ocean biogeochemistry , 2017, Nature.

[15]  H. Paerl,et al.  Molecular insights into a dinoflagellate bloom , 2016, The ISME Journal.

[16]  Peer Bork,et al.  Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses , 2016, Nature.

[17]  M. Doebeli,et al.  Decoupling function and taxonomy in the global ocean microbiome , 2016, Science.

[18]  E. Virginia Armbrust,et al.  The evolution of silicon transporters in diatoms , 2016, Journal of phycology.

[19]  A. Vardi,et al.  Chronic Iron Limitation Confers Transient Resistance to Oxidative Stress in Marine Diatoms1 , 2016, Plant Physiology.

[20]  Alessandra Carbone,et al.  Improvement in Protein Domain Identification Is Reached by Breaking Consensus, with the Agreement of Many Profiles and Domain Co-occurrence , 2016, PLoS Comput. Biol..

[21]  M. Breitbart,et al.  The Ferrojan Horse Hypothesis: Iron-Virus Interactions in the Ocean , 2016, Front. Mar. Sci..

[22]  Francisco M. Cornejo-Castillo,et al.  Delineating ecologically significant taxonomic units from global patterns of marine picocyanobacteria , 2016, Proceedings of the National Academy of Sciences.

[23]  N. Mayot,et al.  In situ imaging reveals the biomass of giant protists in the global ocean , 2016, Nature.

[24]  Stéphane Audic,et al.  Insights into global diatom distribution and diversity in the world’s ocean , 2016, Proceedings of the National Academy of Sciences.

[25]  Anna B. Neuheimer,et al.  Near-island biological hotspots in barren ocean basins , 2016, Nature Communications.

[26]  T. Horiguchi,et al.  Gymnoxanthella radiolariae gen. et sp. nov. (Dinophyceae), a dinoflagellate symbiont from solitary polycystine radiolarians , 2016, Journal of phycology.

[27]  M. Saito,et al.  Co-occurring Synechococcus ecotypes occupy four major oceanic regimes defined by temperature, macronutrients and iron , 2015, The ISME Journal.

[28]  Luis Pedro Coelho,et al.  Plankton networks driving carbon export in the oligotrophic ocean , 2015, Nature.

[29]  Robert D. Finn,et al.  The Pfam protein families database: towards a more sustainable future , 2015, Nucleic Acids Res..

[30]  Alessandra Carbone,et al.  A multi-objective optimization approach accurately resolves protein domain architectures , 2015, Bioinform..

[31]  E. Galbraith,et al.  How well do global ocean biogeochemistry models simulate dissolved iron 3 distributions ? 4 5 , 2016 .

[32]  B. Khoshnood,et al.  Urm1: an essential regulator of JNK signaling and oxidative stress in Drosophila melanogaster , 2015, Cellular and Molecular Life Sciences.

[33]  Stéphane Blain,et al.  Central role for ferritin in the day/night regulation of iron homeostasis in marine phytoplankton , 2015, Proceedings of the National Academy of Sciences.

[34]  Samuel T. Wilson,et al.  Functional group-specific traits drive phytoplankton dynamics in the oligotrophic ocean , 2015, Proceedings of the National Academy of Sciences.

[35]  M. Murphy,et al.  A Diatom Ferritin Optimized for Iron Oxidation but Not Iron Storage* , 2015, The Journal of Biological Chemistry.

[36]  Olivier Aumont,et al.  PISCES-v2: an ocean biogeochemical model for carbon and ecosystem studies , 2015 .

[37]  M. Saito,et al.  Divergent responses of Atlantic coastal and oceanic Synechococcus to iron limitation , 2015, Proceedings of the National Academy of Sciences.

[38]  E. Virginia Armbrust,et al.  Diversity and Evolutionary History of Iron Metabolism Genes in Diatoms , 2015, PloS one.

[39]  A. Marchetti,et al.  Marine diatom proteorhodopsins and their potential role in coping with low iron availability , 2015, The ISME Journal.

[40]  Luis Pedro Coelho,et al.  Structure and function of the global ocean microbiome , 2015, Science.

[41]  Peer Bork,et al.  Environmental characteristics of Agulhas rings affect interocean plankton transport , 2015, Science.

[42]  P. Bork,et al.  Patterns and ecological drivers of ocean viral communities , 2015, Science.

[43]  P. Bork,et al.  Eukaryotic plankton diversity in the sunlit ocean , 2015, Science.

[44]  Peer Bork,et al.  Open science resources for the discovery and analysis of Tara Oceans data , 2015, Scientific Data.

[45]  H. Romero,et al.  Environmental Selection Pressures Related to Iron Utilization Are Involved in the Loss of the Flavodoxin Gene from the Plant Genome , 2015, Genome biology and evolution.

[46]  Alaguraj Veluchamy,et al.  A Novel Protein, Ubiquitous in Marine Phytoplankton, Concentrates Iron at the Cell Surface and Facilitates Uptake , 2015, Current Biology.

[47]  Elizabeth L. Mann,et al.  Genomes and gene expression across light and productivity gradients in eastern subtropical Pacific microbial communities , 2014, The ISME Journal.

[48]  LeAnn P. Whitney,et al.  Genetic indicators of iron limitation in wild populations of Thalassiosira oceanica from the northeast Pacific Ocean , 2014, The ISME Journal.

[49]  P. Bork,et al.  Tara Oceans. Tara Oceans studies plankton at planetary scale. Introduction. , 2015, Science.

[50]  P. Kille,et al.  Metabolites and metals in Metazoa--what role do phytochelatins play in animals? , 2014, Metallomics : integrated biometal science.

[51]  L. Caputi,et al.  An assessment of contamination of the Fusaro Lagoon (Campania Province, southern Italy) by trace metals , 2014, Environmental Monitoring and Assessment.

[52]  F. Not,et al.  Brandtodinium gen. nov. and B. nutricula comb. Nov. (Dinophyceae), a dinoflagellate commonly found in symbiosis with polycystine radiolarians , 2014, Journal of phycology.

[53]  Richard Sanders,et al.  Iron fertilization enhanced net community production but not downward particle flux during the Southern Ocean iron fertilization experiment LOHAFEX , 2013, Global Biogeochemical Cycles.

[54]  A. Edwards,et al.  Tail tip proteins related to bacteriophage λ gpL coordinate an iron-sulfur cluster. , 2013, Journal of molecular biology.

[55]  B. Quéguiner Iron fertilization and the structure of planktonic communities in high nutrient regions of the Southern Ocean , 2013 .

[56]  K. Katoh,et al.  MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability , 2013, Molecular biology and evolution.

[57]  Thomas Mock,et al.  Frustule‐related gene transcription and the influence of diatom community composition on silica precipitation in an iron‐limited environment , 2012 .

[58]  F. D’Ortenzio,et al.  Combined processing and mutual interpretation of radiometry and fluorometry from autonomous profiling Bio-Argo floats: 2. Colored dissolved organic matter absorption retrieval , 2012 .

[59]  G. Piganeau,et al.  Analysis of the Global Ocean Sampling (GOS) Project for Trends in Iron Uptake by Surface Ocean Microbes , 2012, PloS one.

[60]  P. Leiman,et al.  Phage pierces the host cell membrane with the iron-loaded spike. , 2012, Structure.

[61]  David M Schruth,et al.  Comparative metatranscriptomics identifies molecular bases for the physiological responses of phytoplankton to varying iron availability , 2012, Proceedings of the National Academy of Sciences.

[62]  C. Bowler,et al.  Evolution and Functional Diversification of Fructose Bisphosphate Aldolase Genes in Photosynthetic Marine Diatoms , 2011, Molecular biology and evolution.

[63]  M. Albrecht,et al.  Synthesis and Future Directions , 2012 .

[64]  Ulrich C. Klostermeier,et al.  Genome and low-iron response of an oceanic diatom adapted to chronic iron limitation , 2012, Genome Biology.

[65]  O. Aumont,et al.  A global compilation of dissolved iron measurements: focus on distributions and processes in the Southern Ocean , 2011 .

[66]  LeAnn P. Whitney,et al.  Characterization of Putative Iron Responsive Genes as Species-Specific Indicators of Iron Stress in Thalassiosiroid Diatoms , 2011, Front. Microbio..

[67]  Peter Mullany,et al.  Acquired Antibiotic Resistance Genes: An Overview , 2011, Front. Microbio..

[68]  G. Gorsky,et al.  Impact of appendicularians on detritus and export fluxes: a model approach at DyFAMed site , 2011 .

[69]  P. Strutton,et al.  A novel clade of Prochlorococcus found in high nutrient low chlorophyll waters in the South and Equatorial Pacific Ocean , 2011, The ISME Journal.

[70]  Katherine H. Huang,et al.  Transcriptome response of high- and low-light-adapted Prochlorococcus strains to changing iron availability , 2011, The ISME Journal.

[71]  S. Wakeham,et al.  Influence of iron on fatty acid and sterol composition of marine phytoplankton and copepod consumers , 2011 .

[72]  Craig M. Lee,et al.  Gliders as a Component of Future Observing Systems , 2010 .

[73]  P. Rosenstiel,et al.  Recent transfer of an iron-regulated gene from the plastid to the nuclear genome in an oceanic diatom adapted to chronic iron limitation , 2010, BMC Genomics.

[74]  J. Otero,et al.  Structure of the bacteriophage T4 long tail fiber receptor-binding tip , 2010, Proceedings of the National Academy of Sciences.

[75]  Douglas B Rusch,et al.  Characterization of Prochlorococcus clades from iron-depleted oceanic regions , 2010, Proceedings of the National Academy of Sciences.

[76]  O. Gascuel,et al.  New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. , 2010, Systematic biology.

[77]  Stephanie Dutkiewicz,et al.  Patterns of Diversity in Marine Phytoplankton , 2010, Science.

[78]  E. Virginia Armbrust,et al.  Ferritin is used for iron storage in bloom-forming marine pennate diatoms , 2009, Nature.

[79]  E. Birney,et al.  Pfam: the protein families database , 2013, Nucleic Acids Res..

[80]  T. Lee,et al.  ECCO2: High Resolution Global Ocean and Sea Ice Data Synthesis , 2008 .

[81]  V. Smetácek,et al.  The next generation of iron fertilization experiments in the Southern Ocean , 2008, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[82]  H. Claustre,et al.  Distribution and fluxes of aggregates >100 μm in the upper kilometer of the South-Eastern Pacific , 2008 .

[83]  A. Covarrubias,et al.  The Enigmatic LEA Proteins and Other Hydrophilins1[W] , 2008, Plant Physiology.

[84]  A. Fernie,et al.  Whole-cell response of the pennate diatom Phaeodactylum tricornutum to iron starvation , 2008, Proceedings of the National Academy of Sciences.

[85]  Antoine Sciandra,et al.  Introduction to the special section bio-optical and biogeochemical conditions in the South East Pacific in late 2004: the BIOSOPE program , 2008 .

[86]  Crystal Conde,et al.  Are we ready? , 2008, Texas medicine.

[87]  Thomas Mock,et al.  Whole-genome expression profiling of the marine diatom Thalassiosira pseudonana identifies genes involved in silicon bioprocesses , 2008, Proceedings of the National Academy of Sciences.

[88]  P. Raimbault,et al.  Two High-Nutrient Low-Chlorophyll phytoplankton assemblages: the tropical central Pacific and the offshore Perú-Chile Current , 2007 .

[89]  Peter Langfelder,et al.  Eigengene networks for studying the relationships between co-expression modules , 2007, BMC Systems Biology.

[90]  Hervé Claustre,et al.  Contribution of picoplankton to the total particulate organic carbon concentration in the eastern South Pacific , 2007 .

[91]  H. Claustre,et al.  Spatial variability of phytoplankton pigment distributions in the Subtropical South Pacific Ocean: comparison between in situ and predicted data , 2007 .

[92]  G. Gorsky,et al.  Volume distribution for particles between 3.5 to 2000 μm in the upper 200 m region of the South Pacific Gyre , 2007 .

[93]  S. Bonnet,et al.  Dissolved iron distribution in the tropical and sub tropical South Eastern Pacific , 2007 .

[94]  D. Vaulot,et al.  Distribution of micro-organisms along a transect in the South-East Pacific Ocean (BIOSOPE cruise) using epifluorescence microscopy , 2007 .

[95]  M. Ritchie,et al.  The "neutral" community structure of planktonic herbivores, tintinnid ciliates of the microzooplankton, across the SE Tropical Pacific Ocean , 2007 .

[96]  Sallie W. Chisholm,et al.  Emergent Biogeography of Microbial Communities in a Model Ocean , 2007, Science.

[97]  E. Boyle,et al.  Mesoscale Iron Enrichment Experiments 1993-2005: Synthesis and Future Directions , 2007, Science.

[98]  Ron Wehrens,et al.  The pls Package: Principal Component and Partial Least Squares Regression in R , 2007 .

[99]  P. Harrison,et al.  Phytoplankton processes during a mesoscale iron enrichment in the NE subarctic Pacific : Part II-Nutrient utilization , 2006 .

[100]  H. Claustre,et al.  Vertical distribution of phytoplankton communities in open ocean: An assessment based on surface chlorophyll , 2006 .

[101]  N. M. Price,et al.  Copper-containing plastocyanin used for electron transport by an oceanic diatom , 2006, Nature.

[102]  N. Mahowald,et al.  Atmospheric global dust cycle and iron inputs to the ocean , 2005 .

[103]  Andrew J. Watson,et al.  Ecosystem dynamics based on plankton functional types for global ocean biogeochemistry models , 2005 .

[104]  Patrick F. Cummins,et al.  Argo : A new tool for environmental monitoring and assessment of the world's oceans, an example from the N. E. Pacific , 2005 .

[105]  Christopher W. Brown,et al.  The influence of tropical instability waves on phytoplankton blooms in the wake of the Marquesas Islands during 1998 and on the currents observed during the drift of the Kon‐Tiki in 1947 , 2004 .

[106]  E. Martinez,et al.  Island mass effect in the Marquesas Islands: Time variation , 2004 .

[107]  D. Crans,et al.  The chemistry and biochemistry of vanadium and the biological activities exerted by vanadium compounds. , 2004, Chemical reviews.

[108]  U. Sommer,et al.  Mixotrophy of a photosynthetic flagellate viewed from an optimal foraging perspective. , 2003, Protist.

[109]  F. Morel,et al.  A biological function for cadmium in marine diatoms. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[110]  C. McClain,et al.  Mixing and phytoplankton bloom in the wake of the Marquesas Islands , 1999 .

[111]  H. Claustre,et al.  Diversity and Abundance of Bolidophyceae (Heterokonta) in Two Oceanic Regions , 1999, Applied and Environmental Microbiology.

[112]  G. Gorsky,et al.  Picoplankton and nanoplankton aggregation by appendicularians: Fecal pellet contents of Megalocercus huxleyi in the equatorial Pacific , 1999 .

[113]  Daniel Vaulot,et al.  The importance of Prochlorococcus to community structure in the central North Pacific Ocean , 1994 .

[114]  C. D. de Vos,et al.  Glutathione Depletion Due to Copper-Induced Phytochelatin Synthesis Causes Oxidative Stress in Silene cucubalus. , 1992, Plant physiology.

[115]  P. Falkowski,et al.  Effect of iron limitation on photosynthesis in a marine diatom , 1991 .

[116]  Y. Dandonneau,et al.  An empirical approach to the island mass effect in the south tropical Pacific based on sea surface chlorophyll concentrations , 1985 .