OPTIMAL MANAGEMENT OF INVASIVE SPECIES WITH DIFFERENT REPRODUCTION AND SURVIVAL STRATEGIES

In this paper, a numerical model is developed for analyzing the role of species life history and age structure for the optimal management of a commercial resident species that is exposed to an invasive species. It is shown that reproduction and mortality characteristics of both species ands age structure of the invader at the time of invasion are important for the costs of invasions when the invader and resident species compete for scarce resources. Commercially harvested species with low juvenile survival and high reproduction are found to be economically more robust against invasions. Species with these life-history traits are also the most damaging as invaders. Properties of the harvesting cost function and the discount rate are shown to be of importance for the development of the invader population over time. Hence, it is possible to identify specific combinations of life-history characteristics and economic conditions under which invasions cause particularly large economic damage.

[1]  D. Pimentel,et al.  Update on the environmental and economic costs associated with alien-invasive species in the United States , 2005 .

[2]  David M. Lodge,et al.  The importance of bioeconomic feedback in invasive species management , 2005 .

[3]  W. Ricker Stock and Recruitment , 1954 .

[4]  Duncan Knowler,et al.  Reassessing the costs of biological invasion: Mnemiopsis leidyi in the Black sea , 2005 .

[5]  S. A. Barnett,et al.  The natural regulation of animal numbers , 1955 .

[6]  E. Deevey,et al.  Life tables for natural populations of animals. , 1947, The Quarterly review of biology.

[7]  Gunnar Stefánsson,et al.  Utilization of the Icelandic Cod Stock in a Multispecies Context , 1997, Marine Resource Economics.

[8]  J. Shogren,et al.  Managing exotic pests under uncertainty: optimal control actions and bioeconomic investigations , 2005 .

[9]  Chad Settle,et al.  Modeling Native-Exotic Species within Yellowstone Lake , 2002 .

[10]  R. Macarthur,et al.  The Theory of Island Biogeography , 1969 .

[11]  Nicholas J. Bax,et al.  Marine invasive alien species: a threat to global biodiversity , 2003 .

[12]  Marjorie J. Wonham,et al.  Invasion Pressure to a Ballast-flooded Estuary and an Assessment of Inoculant Survival , 1999, Biological Invasions.

[13]  Jon M. Conrad,et al.  Resource Economics: Contents , 2010 .

[14]  Larry B. Crowder,et al.  A Stage‐Based Population Model for Loggerhead Sea Turtles and Implications for Conservation , 1987 .

[15]  P. H. Leslie On the use of matrices in certain population mathematics. , 1945, Biometrika.

[16]  H. Ojaveer The round goby Neogobius melanostomus is colonising the NE Baltic Sea. , 2006 .

[17]  George W. Cox,et al.  Alien species in North America and Hawaii : impacts on natural ecosystems , 2000 .

[18]  C. Duarte,et al.  Management of the Northern Atlantic Bluefin Tuna: An Application of C-Games , 2000, Marine Resource Economics.

[19]  R. Reed An Ecological Risk Assessment of Nonnative Boas and Pythons as Potentially Invasive Species in the United States , 2005, Risk Analysis.

[20]  Aguilar,et al.  Population dynamics of the mexican cycad Dioon edule Lindl. (Zamiaceae): Life history stages and management impact. , 2008 .

[21]  I. Gren,et al.  Costs of Alien Invasive Species in Sweden , 2009, Ambio.

[22]  J. Harper,et al.  The Demography of Plants , 1974 .

[23]  G. Bengtsson,et al.  On the importance of life history and age structure in biological invasions , 2011 .

[24]  J. Levine,et al.  Biological Invasions , 2004 .

[25]  E. Barbier,et al.  An Open-Access Model of Fisheries and Nutrient Enrichment in the Black Sea , 2001, Marine Resource Economics.

[26]  Trond Bjorndal,et al.  Production Economics and Optimal Stock Size in a North Atlantic Fishery , 1987, Fisheries Economics.

[27]  Patrick H. Martin,et al.  Frontiers inEcology and the Environment Why forests appear resistant to exotic plant invasions : intentional introductions , stand dynamics , and the role of shade tolerance , 2008 .

[28]  R. Hilborn,et al.  Economics of Overexploitation Revisited , 2007, Science.

[29]  R. Voss,et al.  Invading Mnemiopsis leidyi as a potential threat to Baltic fish. , 2007 .

[30]  H. MacIsaac,et al.  Propagule pressure: a null model for biological invasions , 2006, Biological Invasions.

[31]  Marco Festa-Bianchet,et al.  AGE‐SPECIFIC SURVIVAL IN FIVE POPULATIONS OF UNGULATES: EVIDENCE OF SENESCENCE , 1999 .

[32]  Hal Caswell,et al.  HARBOR PORPOISE AND FISHERIES: AN UNCERTAINTY ANALYSIS OF INCIDENTAL MORTALITY , 1998 .

[33]  Charles Perrings,et al.  Mitigation and adaptation strategies for the control of biological invasions , 2005 .

[34]  The economics of biological invasions , 2000 .

[35]  Edwin D. Grosholz,et al.  Spread and potential impact of the recently introduced European green crab, Carcinus maenas, in central California , 1995, Marine Biology.

[36]  I. Gren Economics of alien invasive species management - choices of targets and policies , 2008 .

[37]  Raouf Boucekkine,et al.  Age-structured optimization models in fisheries bioeconomics: a survey , 2013 .

[38]  D. Lack The natural regulation of animal numbers , 1954 .

[39]  G. Polis,et al.  Population Biology of a Desert Scorpion: Survivorship, Microhabitat, and the Evolution of Life History Strategy , 1980 .

[40]  P. Sandberg Variable unit costs in an output-regulated industry: The Fishery , 2006 .

[41]  Gerald R. Smith,et al.  Establishment of gobiidae in the great lakes basin , 1992 .

[42]  D. Pegtel Rare vascular plant species at risk: recovery by seeding? , 1998 .

[43]  T. Bjørndal,et al.  The East Atlantic Bluefin Tuna Fisheries: Stock Collapse or Recovery? , 2006, Marine Resource Economics.

[44]  T. Blackburn,et al.  The role of propagule pressure in explaining species invasions. , 2005, Trends in ecology & evolution.

[45]  O. Flaaten,et al.  Harvest Functions: The Norwegian Bottom Trawl Cod Fisheries , 2003, Marine Resource Economics.

[46]  A. Vovides,et al.  Population dynamics of the Mexican cycad Dioon edule Lindl. (Zamiaceae): life history stages and management impact , 2008 .

[47]  W. S. Parker,et al.  Age-Specific Reproductive Tactics , 1975, The American Naturalist.

[48]  K. Johst,et al.  Natal versus breeding dispersal: Evolution in a model system , 1999 .

[49]  V. Kaitala,et al.  International Management Strategies for a Straddling Fish Stock: A Bio-Economic Simulation Model of the Norwegian Spring-Spawning Herring Fishery , 2004 .

[50]  D. Richardson,et al.  What attributes make some plant species more invasive , 1996 .

[51]  M. Sapota The round goby (Neogobius melanostomus) in the Gulf of Gdańsk — a species introduction into the Baltic Sea , 2004 .

[52]  Mark Williamson,et al.  The characters of successful invaders , 1996 .

[53]  T. Bjørndal The optimal management of North Sea Herring , 1988 .

[54]  C. Johnson,et al.  Sex-biased philopatry and dispersal in mammals , 1986, Oecologia.

[55]  D. Gordon,et al.  The Economic Structure of Harvesting for Three Vessel Types in the Norwegian Spring-Spawning Herring Fishery , 2000, Marine Resource Economics.

[56]  J. Pointier,et al.  ECOLOGY OF THE INTRODUCED SNAIL MELANOIDES TUBERCULATA (GASTROPODA: THIARIDAE) IN RELATION TO BIOMPHALARIA GLABRATA IN THE MARSHY FOREST ZONE OF GUADELOUPE, FRENCH WEST INDIES , 1993 .

[57]  N. Mandrak,et al.  Impacts of Alien Invasive Species on Freshwater Fauna at Risk in Canada , 2005, Biological Invasions.

[58]  Optimal Feedback Controls: Comparative Evaluation of the Cod Fisheries in Denmark, Iceland, and Norway , 2004 .

[59]  The effect of age of founder on the probability of survival of a colony. , 1976, Journal of theoretical biology.

[60]  P H Harvey,et al.  THE NATAL AND BREEDING DISPERSAL OF BIRDS , 1982 .

[61]  Santanu Roy,et al.  The Economics of Controlling a Stochastic Biological Invasion , 2002 .

[62]  U. Janas,et al.  First record of Mnemiopsis leidyi A. Agassiz, 1865 in the Gulf of Gdańsk (southern Baltic Sea). , 2007 .

[63]  Reuben P Keller,et al.  Risk assessment for invasive species produces net bioeconomic benefits , 2007, Proceedings of the National Academy of Sciences.

[64]  P. H. Leslie SOME FURTHER NOTES ON THE USE OF MATRICES IN POPULATION MATHEMATICS , 1948 .

[65]  H. Eggert,et al.  Potential rent and overcapacity in the Swedish Baltic Sea trawl fishery for cod (Gadus morhua) , 2004 .

[66]  S. Kuikka,et al.  Modeling environmentally driven uncertainties in Baltic cod (Gadus morhua) management by Bayesian influence diagrams , 1999 .

[67]  D. Lodge,et al.  Take a risk: Preferring prevention over control of biological invaders , 2007 .

[68]  Michael Margolis,et al.  Bang for the Buck : Cost-Effective Control of Invasive Species with Different Life Histories , 2004 .