Dislocation density reduction using overgrowth on hole arrays made in heteroepitaxial diamond substrates

The growth of large-area diamond films with low dislocation density is a landmark in the fabrication of diamond-based power electronic devices or high-energy particle detectors. Here, we report the development of a growth strategy based on the use of micrometric laser-pierced hole arrays to reduce dislocation densities in heteroepitaxial chemical vapor deposition diamond. We show that, under optimal growth conditions, this strategy leads to a reduction in dislocation density by two orders of magnitude to reach an average value of 6 × 105 cm−2 in the region where lateral growth occurred, which is equivalent to that typically measured for commercial type Ib single crystal diamonds.

[1]  K. H. Lee,et al.  Epitaxial diamond on Ir/ SrTiO3/Si (001): From sequential material characterizations to fabrication of lateral Schottky diodes , 2020 .

[2]  S. Ohmagari,et al.  Toward High‐Performance Diamond Electronics: Control and Annihilation of Dislocation Propagation by Metal‐Assisted Termination , 2019, physica status solidi (a).

[3]  Kazuhiro Suzuki,et al.  High crystalline quality heteroepitaxial diamond using grid-patterned nucleation and growth on Ir , 2019, Diamond and Related Materials.

[4]  S. Ohmagari,et al.  Schottky barrier diodes fabricated on diamond mosaic wafers: Dislocation reduction to mitigate the effect of coalescence boundaries , 2019, Applied Physics Letters.

[5]  R. Kass,et al.  Diamond detector technology, status and perspectives , 2017, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment.

[6]  S. Ohmagari,et al.  Large reduction of threading dislocations in diamond by hot-filament chemical vapor deposition accompanying W incorporations , 2018, Applied Physics Letters.

[7]  R. Eusebi,et al.  Diamond detectors for high energy physics experiments , 2018 .

[8]  J. Brom,et al.  Thick CVD diamond films grown on high-quality type IIa HPHT diamond substrates from New Diamond Technology , 2017 .

[9]  Jiecai Han,et al.  Epitaxial growth of mosaic diamond: Mapping of stress and defects in crystal junction with a confocal Raman spectroscopy , 2017 .

[10]  J. Achard,et al.  Reduction of Dislocations in Single Crystal Diamond by Lateral Growth over a Macroscopic Hole , 2017, Advanced materials.

[11]  Thu Nhi Tran Thi,et al.  Synchrotron Bragg diffraction imaging characterization of synthetic diamond crystals for optical and electronic power device applications1 1 , 2017, Journal of applied crystallography.

[12]  S. Gsell,et al.  Ion bombardment induced buried lateral growth: the key mechanism for the synthesis of single crystal diamond wafers , 2017, Scientific Reports.

[13]  Keesook Lee Hétéroépitaxie de films de diamant sur Ir/SrTiO3/Si (001) : une voie prometteuse pour l’élargissement des substrats , 2017 .

[14]  J. Arnault,et al.  Epitaxy of iridium on SrTiO3/Si (001): A promising scalable substrate for diamond heteroepitaxy , 2016 .

[15]  A. Sawabe,et al.  Overgrowth of diamond layers on diamond microneedles: New concept for freestanding diamond substrate by heteroepitaxy , 2016 .

[16]  S. Shikata Single crystal diamond wafers for high power electronics , 2016 .

[17]  T. Ouisse,et al.  Identification of Dislocations in Synthetic Chemically Vapor Deposited Diamond Single Crystals , 2016 .

[18]  A. Sawabe,et al.  Fabrication of freestanding heteroepitaxial diamond substrate via micropatterns and microneedles , 2016 .

[19]  Y. H. Tang,et al.  Stress engineering of high-quality single crystal diamond by heteroepitaxial lateral overgrowth , 2016 .

[20]  Kazuhiro Suzuki,et al.  Wafer bowing control of free-standing heteroepitaxial diamond (100) films grown on Ir(100) substrates via patterned nucleation growth , 2015 .

[21]  B. Golding,et al.  Diamond Heteroepitaxial Lateral Overgrowth , 2015 .

[22]  A. Gicquel,et al.  Improvement of dislocation density in thick CVD single crystal diamond films by coupling H2/O2 plasma etching and chemo‐mechanical or ICP treatment of HPHT substrates , 2014 .

[23]  Satoshi Yamasaki,et al.  Doping and interface of homoepitaxial diamond for electronic applications , 2014 .

[24]  S. Gsell,et al.  Efficiency of dislocation density reduction during heteroepitaxial growth of diamond for detector applications , 2013 .

[25]  S. Shikata,et al.  Uniform growth and repeatable fabrication of inch-sized wafers of a single-crystal diamond☆ , 2013 .

[26]  S. Gsell,et al.  In situ boron doping during heteroepitaxial growth of diamond on Ir/YSZ/Si , 2012 .

[27]  P. Doppelt,et al.  Etch‐pit formation mechanism induced on HPHT and CVD diamond single crystals by H2/O2 plasma etching treatment , 2012 .

[28]  G. Jessen,et al.  Progress towards III‐nitrides HEMTs on free‐standing diamond substrates for thermal management , 2011 .

[29]  Michael Dudley,et al.  Springer handbook of crystal growth , 2010 .

[30]  D Dube,et al.  HPHT growth and x-ray characterization of high-quality type IIa diamond , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[31]  X. Bonnin,et al.  Identification of etch‐pit crystallographic faces induced on diamond surface by H2/O2 etching plasma treatment , 2009 .

[32]  P. Martineau,et al.  Effect of steps on dislocations in CVD diamond grown on {001} substrates , 2009 .

[33]  S. Gsell,et al.  Growth of twin-free heteroepitaxial diamond on Ir/YSZ/Si(111) , 2008 .

[34]  X. Bonnin,et al.  Dependence of CVD diamond growth rate on substrate orientation as a function of process parameters in the high microwave power density regime , 2008 .

[35]  S. Gsell,et al.  Preparation of 4-inch Ir/YSZ/Si(001) substrates for the large-area deposition of single-crystal diamond , 2008 .

[36]  E. Kohn,et al.  Diamond power devices. Concepts and limits , 2005 .

[37]  R. S. Sussmann,et al.  Homoepitaxial deposition of high-quality thick diamond films: effect of growth parameters , 2005 .

[38]  Kazuhiro Suzuki,et al.  Patterned growth of heteroepitaxial diamond , 2004 .

[39]  Matthias Schreck,et al.  A route to diamond wafers by epitaxial deposition on silicon via iridium/yttria-stabilized zirconia buffer layers , 2004 .

[40]  M. Schreck,et al.  Mosaicity reduction during growth of heteroepitaxial diamond films on iridium buffer layers: Experimental results and numerical simulations , 2002 .

[41]  Robert F. Davis,et al.  Pendeoepitaxy of gallium nitride thin films , 1999 .

[42]  Akira Sakai,et al.  Thick GaN Epitaxial Growth with Low Dislocation Density by Hydride Vapor Phase Epitaxy , 1997 .