Dislocation density reduction using overgrowth on hole arrays made in heteroepitaxial diamond substrates
暂无分享,去创建一个
J. Arnault | F. Bénédic | J. Achard | S. Saada | O. Brinza | A. Tallaire | V. Mille | R. Issaoui | J. Delchevalrie | L. Mehmel | Julien Delchevalrie | Samuel Saada
[1] K. H. Lee,et al. Epitaxial diamond on Ir/ SrTiO3/Si (001): From sequential material characterizations to fabrication of lateral Schottky diodes , 2020 .
[2] S. Ohmagari,et al. Toward High‐Performance Diamond Electronics: Control and Annihilation of Dislocation Propagation by Metal‐Assisted Termination , 2019, physica status solidi (a).
[3] Kazuhiro Suzuki,et al. High crystalline quality heteroepitaxial diamond using grid-patterned nucleation and growth on Ir , 2019, Diamond and Related Materials.
[4] S. Ohmagari,et al. Schottky barrier diodes fabricated on diamond mosaic wafers: Dislocation reduction to mitigate the effect of coalescence boundaries , 2019, Applied Physics Letters.
[5] R. Kass,et al. Diamond detector technology, status and perspectives , 2017, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment.
[6] S. Ohmagari,et al. Large reduction of threading dislocations in diamond by hot-filament chemical vapor deposition accompanying W incorporations , 2018, Applied Physics Letters.
[7] R. Eusebi,et al. Diamond detectors for high energy physics experiments , 2018 .
[8] J. Brom,et al. Thick CVD diamond films grown on high-quality type IIa HPHT diamond substrates from New Diamond Technology , 2017 .
[9] Jiecai Han,et al. Epitaxial growth of mosaic diamond: Mapping of stress and defects in crystal junction with a confocal Raman spectroscopy , 2017 .
[10] J. Achard,et al. Reduction of Dislocations in Single Crystal Diamond by Lateral Growth over a Macroscopic Hole , 2017, Advanced materials.
[11] Thu Nhi Tran Thi,et al. Synchrotron Bragg diffraction imaging characterization of synthetic diamond crystals for optical and electronic power device applications1 1 , 2017, Journal of applied crystallography.
[12] S. Gsell,et al. Ion bombardment induced buried lateral growth: the key mechanism for the synthesis of single crystal diamond wafers , 2017, Scientific Reports.
[13] Keesook Lee. Hétéroépitaxie de films de diamant sur Ir/SrTiO3/Si (001) : une voie prometteuse pour l’élargissement des substrats , 2017 .
[14] J. Arnault,et al. Epitaxy of iridium on SrTiO3/Si (001): A promising scalable substrate for diamond heteroepitaxy , 2016 .
[15] A. Sawabe,et al. Overgrowth of diamond layers on diamond microneedles: New concept for freestanding diamond substrate by heteroepitaxy , 2016 .
[16] S. Shikata. Single crystal diamond wafers for high power electronics , 2016 .
[17] T. Ouisse,et al. Identification of Dislocations in Synthetic Chemically Vapor Deposited Diamond Single Crystals , 2016 .
[18] A. Sawabe,et al. Fabrication of freestanding heteroepitaxial diamond substrate via micropatterns and microneedles , 2016 .
[19] Y. H. Tang,et al. Stress engineering of high-quality single crystal diamond by heteroepitaxial lateral overgrowth , 2016 .
[20] Kazuhiro Suzuki,et al. Wafer bowing control of free-standing heteroepitaxial diamond (100) films grown on Ir(100) substrates via patterned nucleation growth , 2015 .
[21] B. Golding,et al. Diamond Heteroepitaxial Lateral Overgrowth , 2015 .
[22] A. Gicquel,et al. Improvement of dislocation density in thick CVD single crystal diamond films by coupling H2/O2 plasma etching and chemo‐mechanical or ICP treatment of HPHT substrates , 2014 .
[23] Satoshi Yamasaki,et al. Doping and interface of homoepitaxial diamond for electronic applications , 2014 .
[24] S. Gsell,et al. Efficiency of dislocation density reduction during heteroepitaxial growth of diamond for detector applications , 2013 .
[25] S. Shikata,et al. Uniform growth and repeatable fabrication of inch-sized wafers of a single-crystal diamond☆ , 2013 .
[26] S. Gsell,et al. In situ boron doping during heteroepitaxial growth of diamond on Ir/YSZ/Si , 2012 .
[27] P. Doppelt,et al. Etch‐pit formation mechanism induced on HPHT and CVD diamond single crystals by H2/O2 plasma etching treatment , 2012 .
[28] G. Jessen,et al. Progress towards III‐nitrides HEMTs on free‐standing diamond substrates for thermal management , 2011 .
[29] Michael Dudley,et al. Springer handbook of crystal growth , 2010 .
[30] D Dube,et al. HPHT growth and x-ray characterization of high-quality type IIa diamond , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.
[31] X. Bonnin,et al. Identification of etch‐pit crystallographic faces induced on diamond surface by H2/O2 etching plasma treatment , 2009 .
[32] P. Martineau,et al. Effect of steps on dislocations in CVD diamond grown on {001} substrates , 2009 .
[33] S. Gsell,et al. Growth of twin-free heteroepitaxial diamond on Ir/YSZ/Si(111) , 2008 .
[34] X. Bonnin,et al. Dependence of CVD diamond growth rate on substrate orientation as a function of process parameters in the high microwave power density regime , 2008 .
[35] S. Gsell,et al. Preparation of 4-inch Ir/YSZ/Si(001) substrates for the large-area deposition of single-crystal diamond , 2008 .
[36] E. Kohn,et al. Diamond power devices. Concepts and limits , 2005 .
[37] R. S. Sussmann,et al. Homoepitaxial deposition of high-quality thick diamond films: effect of growth parameters , 2005 .
[38] Kazuhiro Suzuki,et al. Patterned growth of heteroepitaxial diamond , 2004 .
[39] Matthias Schreck,et al. A route to diamond wafers by epitaxial deposition on silicon via iridium/yttria-stabilized zirconia buffer layers , 2004 .
[40] M. Schreck,et al. Mosaicity reduction during growth of heteroepitaxial diamond films on iridium buffer layers: Experimental results and numerical simulations , 2002 .
[41] Robert F. Davis,et al. Pendeoepitaxy of gallium nitride thin films , 1999 .
[42] Akira Sakai,et al. Thick GaN Epitaxial Growth with Low Dislocation Density by Hydride Vapor Phase Epitaxy , 1997 .