Side‐Gated In2O3 Nanowire Ferroelectric FETs for High‐Performance Nonvolatile Memory Applications

A new type of ferroelectric FET based on the single nanowire is demonstrated. The design of the side‐gated architecture not only simplifies the manufacturing process but also avoids any postdeposition damage to the organic ferroelectric film. The devices exhibit excellent performances for nonvolatile memory applications, and the memory hysteresis can be effectively modulated by adjusting the side‐gate geometries.

[1]  Sung-Min Yoon,et al.  Fully Transparent Non‐volatile Memory Thin‐Film Transistors Using an Organic Ferroelectric and Oxide Semiconductor Below 200 °C , 2010 .

[2]  Walter Riess,et al.  Nanowire-based one-dimensional electronics , 2006 .

[3]  Tse Nga Ng,et al.  Organic inkjet-patterned memory array based on ferroelectric field-effect transistors , 2011 .

[4]  B. Lee,et al.  Ferroelectric polymer-gated graphene memory with high speed conductivity modulation , 2013, Nanotechnology.

[5]  Xiangfeng Duan,et al.  High-performance thin-film transistors using semiconductor nanowires and nanoribbons , 2003, Nature.

[6]  Jason Hoffman,et al.  Ferroelectric Field Effect Transistors for Memory Applications , 2010, Advanced materials.

[7]  Gerwin H. Gelinck,et al.  High-performance solution-processed polymer ferroelectric field-effect transistors , 2005 .

[8]  L. You,et al.  Universal Ferroelectric Switching Dynamics of Vinylidene Fluoride-trifluoroethylene Copolymer Films , 2014, Scientific Reports.

[9]  R. H. Kim,et al.  Thin reduced graphene oxide interlayer with a conjugated block copolymer for high performance non-volatile ferroelectric polymer memory , 2014 .

[10]  S. Yoon,et al.  Non‐volatile Ferroelectric Poly(vinylidene fluoride‐co‐trifluoroethylene) Memory Based on a Single‐Crystalline Tri‐isopropylsilylethynyl Pentacene Field‐Effect Transistor , 2009 .

[11]  A. Sinitskii,et al.  Optoelectrical Molybdenum Disulfide (MoS2)--Ferroelectric Memories. , 2015, ACS nano.

[12]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[13]  Pyo Jin Jeon,et al.  Ferroelectric Nonvolatile Nanowire Memory Circuit Using a Single ZnO Nanowire and Copolymer Top Layer , 2012, Advanced materials.

[14]  Xiao Wei Sun,et al.  Ferroelectric transistors with nanowire channel: toward nonvolatile memory applications. , 2009, ACS nano.

[15]  N. Ming,et al.  Colossal electroresistance in metal/ferroelectric/semiconductor tunnel diodes for resistive switching memories , 2012, 1208.5300.

[16]  Zhiyong Fan,et al.  Single InAs nanowire room-temperature near-infrared photodetectors. , 2014, ACS nano.

[17]  Tunable threshold voltage of an n-type Si nanowire ferroelectric-gate field effect transistor for high-performance nonvolatile memory applications. , 2014, Nanotechnology.

[18]  H. Alshareef,et al.  High‐Performance Non‐Volatile Organic Ferroelectric Memory on Banknotes , 2012, Advanced materials.

[19]  J. Chu,et al.  Transition of the polarization switching from extrinsic to intrinsic in the ultrathin polyvinylidene fluoride homopolymer films , 2014 .

[20]  Antonio Fábio,et al.  Polymer , 2018, Definitions.

[21]  R. Hoffman ZnO-channel thin-film transistors: Channel mobility , 2004 .

[22]  P. Gregory,et al.  February , 1890, The Hospital.

[23]  J. Ho,et al.  Controllable electrical properties of metal-doped In2O3 nanowires for high-performance enhancement-mode transistors. , 2013, ACS nano.

[24]  Dago M. de Leeuw,et al.  Physics of organic ferroelectric field-effect transistors , 2012 .

[25]  Qiming Zhang,et al.  Novel polymer ferroelectric behavior via crystal isomorphism and the nanoconfinement effect , 2013 .

[26]  M. Tang,et al.  Ultrasensitive and Broadband MoS2 Photodetector Driven by Ferroelectrics , 2015, Advanced materials.

[27]  D. Suh,et al.  Ferroelectric Single-Crystal Gated Graphene/Hexagonal-BN/Ferroelectric Field-Effect Transistor. , 2015, ACS nano.

[28]  Po-Chiang Chen,et al.  High-performance single-crystalline arsenic-doped indium oxide nanowires for transparent thin-film transistors and active matrix organic light-emitting diode displays. , 2009, ACS nano.

[29]  G. Gelinck,et al.  Large scale integration of flexible non-volatile, re-addressable memories using P(VDF-TrFE) and amorphous oxide transistors , 2015 .

[30]  T. Wen,et al.  Manipulating the Hysteresis in Poly(vinyl alcohol)‐Dielectric Organic Field‐Effect Transistors Toward Memory Elements , 2013 .

[31]  P. Jeon,et al.  MoS2 nanosheets for top-gate nonvolatile memory transistor channel. , 2012, Small.

[32]  J. Gilman,et al.  Nanotechnology , 2001 .

[33]  D. Kang,et al.  Low-Programmable-Voltage Nonvolatile Memory Devices Based on Omega-shaped Gate Organic Ferroelectric P(VDF-TrFE) Field Effect Transistors Using p-type Silicon Nanowire Channels , 2014, Nano-Micro Letters.

[34]  Fang Qian,et al.  Nanowire electronic and optoelectronic devices , 2006 .

[35]  Chao Li,et al.  Diameter‐Controlled Growth of Single‐Crystalline In2O3 Nanowires and Their Electronic Properties , 2003 .

[36]  Sung-Yong Min,et al.  Non-volatile ferroelectric memory with position-addressable polymer semiconducting nanowire. , 2014, Small.

[37]  M. Welland,et al.  High performance non-volatile ferroelectric copolymer memory based on a ZnO nanowire transistor fabricated on a transparent substrate , 2014 .

[38]  Di Wu,et al.  Ferroelectric-field-effect-enhanced electroresistance in metal/ferroelectric/semiconductor tunnel junctions. , 2013, Nature materials.

[39]  Kang L. Wang,et al.  Robust bi-stable memory operation in single-layer graphene ferroelectric memory , 2011 .