QUAntum Particle Swarm Optimization: an auto-adaptive PSO for local and global optimization

[1]  Ponnuthurai N. Suganthan,et al.  Major Advances in Particle Swarm Optimization: Theory, Analysis, and Application , 2021, Swarm Evol. Comput..

[2]  Ponnuthurai Nagaratnam Suganthan,et al.  Chaotic Heterogeneous Comprehensive Learning Particle Swarm Optimizer Variants for Permanent Magnet Synchronous Motor Models Parameters Estimation , 2020 .

[3]  Gary G. Yen,et al.  Particle swarm optimization of deep neural networks architectures for image classification , 2019, Swarm Evol. Comput..

[4]  Andries Petrus Engelbrecht,et al.  Optimal parameter regions and the time-dependence of control parameter values for the particle swarm optimization algorithm , 2018, Swarm Evol. Comput..

[5]  Patrick Siarry,et al.  Solving reverse emergence with quantum PSO application to image processing , 2018, Soft Computing.

[6]  Tianyuan Xiao,et al.  A hybrid PSO/SA algorithm for bi-criteria stochastic line balancing with flexible task times and zoning constraints , 2018, J. Intell. Manuf..

[7]  Andries Petrus Engelbrecht,et al.  Particle swarm stability: a theoretical extension using the non-stagnate distribution assumption , 2018, Swarm Intelligence.

[8]  Ponnuthurai N. Suganthan,et al.  Population topologies for particle swarm optimization and differential evolution , 2017, Swarm Evol. Comput..

[9]  Giancarlo Mauri,et al.  Fuzzy Self-Tuning PSO: A settings-free algorithm for global optimization , 2017, Swarm Evol. Comput..

[10]  Jun Sun,et al.  Improved quantum-behaved particle swarm optimization with local search strategy , 2017 .

[11]  Andries Petrus Engelbrecht,et al.  Inertia weight control strategies for particle swarm optimization , 2016, Swarm Intelligence.

[12]  Guanying Wang,et al.  Multimodal medical image fusion using PCNN optimized by the QPSO algorithm , 2016, Appl. Soft Comput..

[13]  Andries Petrus Engelbrecht,et al.  Particle swarm variants: standardized convergence analysis , 2015, Swarm Intelligence.

[14]  Yudong Zhang,et al.  Feed‐forward neural network optimized by hybridization of PSO and ABC for abnormal brain detection , 2015, Int. J. Imaging Syst. Technol..

[15]  Xin-She Yang,et al.  Bat algorithm based on simulated annealing and Gaussian perturbations , 2014, Neural Computing and Applications.

[16]  John A. Clark,et al.  The executable experimental template pattern for the systematic comparison of metaheuristics: Extended Abstract , 2014, GECCO.

[17]  Sung Nam Jung,et al.  Advanced particle swarm assisted genetic algorithm for constrained optimization problems , 2014, Computational Optimization and Applications.

[18]  Kalyanmoy Deb,et al.  Enhancing performance of particle swarm optimization through an algorithmic link with genetic algorithms , 2013, Comput. Optim. Appl..

[19]  Teresa Wu,et al.  An Adaptive Particle Swarm Optimization With Multiple Adaptive Methods , 2013, IEEE Transactions on Evolutionary Computation.

[20]  Andries Petrus Engelbrecht,et al.  Training feedforward neural networks with dynamic particle swarm optimisation , 2012, Swarm Intelligence.

[21]  Xiaojun Wu,et al.  Convergence analysis and improvements of quantum-behaved particle swarm optimization , 2012, Inf. Sci..

[22]  Yudong Zhang,et al.  A Robust Hybrid Restarted Simulated Annealing Particle Swarm Optimization Technique , 2012, CSA 2012.

[23]  Mehmet Fatih Tasgetiren,et al.  Differential evolution algorithm with ensemble of parameters and mutation strategies , 2011, Appl. Soft Comput..

[24]  Bijaya K. Panigrahi,et al.  Hybrid Bacterial Foraging with parameter free PSO , 2009, 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC).

[25]  Shigeru Obayashi,et al.  Development and investigation of efficient GA/PSO-hybrid algorithm applicable to real-world design optimization , 2009, 2009 IEEE Congress on Evolutionary Computation.

[26]  P. N. Suganthan,et al.  Differential Evolution Algorithm With Strategy Adaptation for Global Numerical Optimization , 2009, IEEE Transactions on Evolutionary Computation.

[27]  Francesco Grimaccia,et al.  Development and validation of different hybridization strategies between GA and PSO , 2007, 2007 IEEE Congress on Evolutionary Computation.

[28]  M. Clerc Stagnation Analysis in Particle Swarm Optimisation or What Happens When Nothing Happens , 2006 .

[29]  Jing Liu,et al.  QPSO-Based QoS Multicast Routing Algorithm , 2006, SEAL.

[30]  Wenbo Xu,et al.  Improving Quantum-Behaved Particle Swarm Optimization by Simulated Annealing , 2006, ICIC.

[31]  Saku Kukkonen,et al.  Real-parameter optimization with differential evolution , 2005, 2005 IEEE Congress on Evolutionary Computation.

[32]  Johann Dréo,et al.  Metaheuristics for Hard Optimization: Methods and Case Studies , 2005 .

[33]  Wenbo Xu,et al.  Adaptive parameter control for quantum-behaved particle swarm optimization on individual level , 2005, 2005 IEEE International Conference on Systems, Man and Cybernetics.

[34]  Xi-Huai Wang,et al.  Hybrid particle swarm optimization with simulated annealing , 2004, Proceedings of 2004 International Conference on Machine Learning and Cybernetics (IEEE Cat. No.04EX826).

[35]  Wenbo Xu,et al.  Particle swarm optimization with particles having quantum behavior , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[36]  Andries Petrus Engelbrecht,et al.  Using neighbourhoods with the guaranteed convergence PSO , 2003, Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS'03 (Cat. No.03EX706).

[37]  Maurice Clerc,et al.  The particle swarm - explosion, stability, and convergence in a multidimensional complex space , 2002, IEEE Trans. Evol. Comput..

[38]  James Kennedy,et al.  Small worlds and mega-minds: effects of neighborhood topology on particle swarm performance , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[39]  Yue Shi,et al.  A modified particle swarm optimizer , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[40]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[41]  Mahdi Yaghoobi,et al.  SUPER-SAPSO: A New SA-Based PSO Algorithm , 2009 .

[42]  Weiwei Hu,et al.  A New QPSO Based BP Neural Network for Face Detection , 2007, ICFIE.

[43]  John Fulcher,et al.  Computational Intelligence: An Introduction , 2008, Computational Intelligence: A Compendium.

[44]  G. Fleury Methodes stochastiques et deterministes pour les problemes np-difficiles , 1993 .

[45]  Jing Wang,et al.  Swarm Intelligence in Cellular Robotic Systems , 1993 .