Quantum field theory, horizons and thermodynamics

Abstract The aim of the article is to obtain an intuitive understanding of the recently explored deep connections between thermal physics, quantum field theory and general relativity. A special case in which a detector moves with constant acceleration through a quantum vacuum is examined to clarify the fact that such a detector becomes thermally excited, with a temperature proportional to its acceleration. An elementary physical explanation of this fundamental result is provided. The uniformly accelerated observer finds his space-time manifold bounded by an event horizon and so realizes a ‘model’ black hole. Real black holes also have thermal properties when quantum effects are taken into account; these are described and the correspondences with the accelerated case are pointed out. In particular, an elementary account is given of the thermal Hawking radiation emitted by the black holes formed by collapsed stars.

[1]  J. Bekenstein Black Holes and Entropy , 1973, Jacob Bekenstein.

[2]  J. S. Dowker,et al.  FIELD THEORIES ON CONFORMALLY RELATED SPACE-TIMES: SOME GLOBAL CONSIDERATIONS , 1979 .

[3]  Robert A. Smith Excitation of transitions between atomic or molecular energy levels by monochromatic laser radiation - I. Excitation under conditions of strictly homogeneous line broadening , 1978, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[4]  G. Gibbons,et al.  Black holes and thermal Green functions , 1978, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[5]  D. Deutsch,et al.  On the vacuum stress induced by uniform acceleration or supporting the ether , 1977, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[6]  W. Unruh Notes on black-hole evaporation , 1976 .

[7]  J. S. Dowker,et al.  Effective Lagrangian and energy-momentum tensor in de Sitter space , 1976 .

[8]  Werner Israel,et al.  Thermo-field dynamics of black holes☆ , 1976 .

[9]  Peter W. Milonni,et al.  Semiclassical and quantum-electrodynamical approaches in nonrelativistic radiation theory , 1976 .

[10]  Stephen W. Hawking,et al.  Path Integral Derivation of Black Hole Radiance , 1976 .

[11]  D. Raine,et al.  General Relativistic Quantum Field Theory-An Exactly Soluble Model , 1975 .

[12]  B. Dewitt,et al.  Quantum field theory in curved spacetime , 1975 .

[13]  P. Davies Scalar production in Schwarzschild and Rindler metrics , 1975 .

[14]  D. Boulware Quantum Field Theory in Schwarzschild and Rindler Spaces , 1975 .

[15]  Rudolf Haag,et al.  Stability and equilibrium states , 1974 .

[16]  J. Bekenstein Generalized second law of thermodynamics in black-hole physics , 1974, Jacob Bekenstein.

[17]  S. Hawking,et al.  Black hole explosions? , 1974, Nature.

[18]  I. Senitzky Radiation-Reaction and Vacuum-Field Effects in Heisenberg-Picture Quantum Electrodynamics , 1973 .

[19]  P. Milonni,et al.  Interpretation of Radiative Corrections in Spontaneous Emission , 1973 .

[20]  Brandon Carter,et al.  The four laws of black hole mechanics , 1973 .

[21]  S. Fulling,et al.  Nonuniqueness of Canonical Field Quantization in Riemannian Space-Time , 1973 .

[22]  É. Tagirov Consequences of field quantization in De Sitter type cosmological models , 1973 .

[23]  Stephen W. Hawking,et al.  Gravitational radiation from colliding black holes , 1971 .

[24]  W. Rindler,et al.  Essential Relativity: Special, General, and Cosmological , 1970 .

[25]  B. Carter Killing Horizons and Orthogonally Transitive Groups in Space‐Time , 1969 .

[26]  M. M. Miller,et al.  Fundamentals of Quantum Optics , 1968 .

[27]  Melvin Lax,et al.  Quantum Noise. IV. Quantum Theory of Noise Sources , 1966 .

[28]  G. W. Ford,et al.  Statistical Mechanics of Assemblies of Coupled Oscillators , 1965 .

[29]  R. Mould,et al.  Internal absorption properties of accelerating detectors , 1964 .

[30]  R. Glauber Coherent and incoherent states of the radiation field , 1963 .

[31]  F. Rohrlich The principle of equivalence , 1963 .

[32]  T. Bradbury Radiation damping in classical electrodynamics , 1962 .

[33]  J. Schwinger Brownian Motion of a Quantum Oscillator , 1961 .

[34]  C. Sherwin Some Recent Experimental Tests of the "Clock Paradox" , 1960 .

[35]  M. Kruskal,et al.  Maximal extension of Schwarzschild metric , 1960 .

[36]  par Cl. George Mouvement brownien d'un oscillateur quantique , 1960 .

[37]  Induced and Spontaneous Emission in a Coherent Field , 1958 .

[38]  H. Callen,et al.  Irreversibility and Generalized Noise , 1951 .

[39]  G. Uhlenbeck,et al.  On the Theory of the Brownian Motion II , 1945 .

[40]  F. Bloch,et al.  Zur Theorie des Austauschproblems und der Remanenzerscheinung der Ferromagnetika , 1932 .

[41]  M. Planck Ueber irreversible Strahlungsvorgänge , 1900 .