Segmentation and description of natural outdoor scenes

A scene description and segmentation system capable of recognising natural objects (e.g. sky, trees, grass) under different outdoor conditions is presented. We propose an hybrid and probabilistic classifier of image regions as a first step in solving the problem of scene context generation. We focus our work in the problem of image regions labeling to classify every pixel of a given image into one of several predefined classes. The result is both a segmentation of the image and a recognition of each segment as a given object class or as an unknown segmented object. Classification performance has been evaluated with the Outex dataset and compared to the approach of Marti et al. (IVC 2001) and He et al. (CVPR 2004) using their own datasets, showing the superiority of our method.

[1]  Uday B. Desai,et al.  Image Interpretation Using , 1996 .

[2]  Pietro Perona,et al.  A Bayesian approach to unsupervised one-shot learning of object categories , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[3]  Pietro Perona,et al.  Learning Generative Visual Models from Few Training Examples: An Incremental Bayesian Approach Tested on 101 Object Categories , 2004, 2004 Conference on Computer Vision and Pattern Recognition Workshop.

[4]  Jianping Fan,et al.  Statistical modeling and conceptualization of natural images , 2005, Pattern Recognit..

[5]  Pietro Perona,et al.  A Bayesian approach to unsupervised one-shot learning of object categories , 2003, ICCV 2003.

[6]  Zhuowen Tu,et al.  Image Parsing: Unifying Segmentation, Detection, and Recognition , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[7]  Mehmet Celenk,et al.  A color clustering technique for image segmentation , 1990, Comput. Vis. Graph. Image Process..

[8]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[9]  Joan Batlle,et al.  A new approach to outdoor scene description based on learning and top-down segmentation , 2001, Image Vis. Comput..

[10]  Anil K. Jain,et al.  Image classification for content-based indexing , 2001, IEEE Trans. Image Process..

[11]  Alan L. Yuille,et al.  Region Competition: Unifying Snakes, Region Growing, and Bayes/MDL for Multiband Image Segmentation , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Antonio Torralba,et al.  Contextual Priming for Object Detection , 2003, International Journal of Computer Vision.

[13]  Robert M. Haralick,et al.  Textural Features for Image Classification , 1973, IEEE Trans. Syst. Man Cybern..

[14]  Antonio Torralba,et al.  Learning hierarchical models of scenes, objects, and parts , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[15]  David A. Forsyth,et al.  Learning the semantics of words and pictures , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[16]  Stuart J. Russell,et al.  BLOG: Probabilistic Models with Unknown Objects , 2005, IJCAI.

[17]  Paul A. Viola,et al.  Robust Real-Time Face Detection , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[18]  Martial Hebert,et al.  Toward generating labeled maps from color and range data for robot navigation , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[19]  Martial Hebert,et al.  An observation-constrained generative approach for probabilistic classification of image regions , 2003, Image Vis. Comput..

[20]  Rachid Deriche,et al.  Geodesic Active Regions and Level Set Methods for Supervised Texture Segmentation , 2002, International Journal of Computer Vision.

[21]  Jiebo Luo,et al.  Perceptual grouping of segmented regions in color images , 2003 .

[22]  Miguel Á. Carreira-Perpiñán,et al.  Multiscale conditional random fields for image labeling , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[23]  Josef Kittler,et al.  Floating search methods in feature selection , 1994, Pattern Recognit. Lett..

[24]  Matti Pietikäinen,et al.  Outex - new framework for empirical evaluation of texture analysis algorithms , 2002, Object recognition supported by user interaction for service robots.

[25]  A.E.C. Pece Preface to Workshop on Generative Model Based Vision , 2004, CVPR 2004.

[26]  Xavier Lladó,et al.  Colour Texture Segmentation by Region-Boundary Cooperation , 2004, ECCV.

[27]  Andrew Zisserman,et al.  Viewpoint invariant texture matching and wide baseline stereo , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[28]  Luc Van Gool,et al.  Modeling scenes with local descriptors and latent aspects , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[29]  David A. Forsyth,et al.  The effects of segmentation and feature choice in a translation model of object recognition , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[30]  Pietro Perona,et al.  A Bayesian hierarchical model for learning natural scene categories , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[31]  Terry Caelli,et al.  Learning Task-Specific Object Recognition and Scene Understanding , 2000, Comput. Vis. Image Underst..

[32]  Jake K. Aggarwal,et al.  Image Interpretation Using Multiple Sensing Modalities , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[33]  David A. Forsyth,et al.  Matching Words and Pictures , 2003, J. Mach. Learn. Res..

[34]  Monique Thonnat,et al.  A cognitive vision platform for automatic recognition of natural complex objects , 2003, Proceedings. 15th IEEE International Conference on Tools with Artificial Intelligence.

[35]  Joan Batlle,et al.  A review on strategies for recognizing natural objects in colour images of outdoor scenes , 2000, Image Vis. Comput..

[36]  Antonio Torralba,et al.  Modeling the Shape of the Scene: A Holistic Representation of the Spatial Envelope , 2001, International Journal of Computer Vision.

[37]  Pietro Perona,et al.  Learning object categories from Google's image search , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[38]  Julia Vogel,et al.  Semantic scene modeling and retrieval , 2004 .

[39]  Jiebo Luo,et al.  Probabilistic spatial context models for scene content understanding , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[40]  Jiebo Luo,et al.  Improved scene classification using efficient low-level features and semantic cues , 2004, Pattern Recognit..

[41]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[42]  Thomas M. Strat,et al.  Context-Based Vision: Recognizing Objects Using Information from Both 2D and 3D Imagery , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[43]  Alexei A. Efros,et al.  Discovering object categories in image collections , 2005 .