Two-Phase Problems for Linear Elliptic Operators with Variable Coefficients: Lipschitz Free Boundaries are C1,γ
暂无分享,去创建一个
[1] Peichen Wang. Regularity of free boundaries of two‐phase problems for fully nonlinear elliptic equations of second order I. Lipschitz free boundaries are C1,α , 2000 .
[2] M. Feldman. Regularity for nonisotropic two-phase problems with Lipschitz free boundaries , 1997, Differential and Integral Equations.
[3] S. Salsa,et al. Fatou Theorems for Some Nonlinear Elliptic Equations. , 1988 .
[4] L. Caffarelli. A Harnack Inequality Approach to the Regularity of Free Boundaries. Part I: Lipschitz Free Boundaries are $C^{1, \alpha}$ , 1987 .
[5] Carlos E. Kenig,et al. Boundary behavior of harmonic functions in non-tangentially accessible domains , 1982 .
[6] M. Feldman. Regularity of Lipschitz free boundaries in two-phase problems for fully nonlinear elliptic equations , 2001 .
[7] Luis A. Caffarelli,et al. Regularity of the free boundary in parabolic phase-transition problems , 1996 .
[8] L. Caffarelli. A Harnack inequality approach to the regularity of free boundaries part II: Flat free boundaries are Lipschitz , 1989 .
[9] L. Caffarelli. A harnack inequality approach to the regularity of free boundaries , 1986 .
[10] A. Ancona. Principe de Harnack à la frontière et théorème de Fatou pour un opérateur elliptique dans un domaine lipschitzien , 1978 .