Optimization-based trajectory generation with linear temporal logic specifications

We present a mathematical programming-based method for optimal control of discrete-time dynamical systems subject to temporal logic task specifications. We use linear temporal logic (LTL) to specify a wide range of properties and tasks, such as safety, progress, response, surveillance, repeated assembly, and environmental monitoring. Our method directly encodes an LTL formula as mixed-integer linear constraints on the continuous system variables, avoiding the computationally expensive processes of creating a finite abstraction of the system and a Büchi automaton for the specification. In numerical experiments, we solve temporal logic motion planning tasks for high-dimensional (10+ continuous state) dynamical systems.

[1]  Jur P. van den Berg,et al.  Kinodynamic RRT*: Asymptotically optimal motion planning for robots with linear dynamics , 2013, 2013 IEEE International Conference on Robotics and Automation.

[2]  Johan Efberg,et al.  YALMIP : A toolbox for modeling and optimization in MATLAB , 2004 .

[3]  Steven M. LaValle,et al.  Planning algorithms , 2006 .

[4]  Ufuk Topcu,et al.  Receding Horizon Temporal Logic Planning , 2012, IEEE Transactions on Automatic Control.

[5]  Martin Fränzle,et al.  Efficient Proof Engines for Bounded Model Checking of Hybrid Systems , 2005, FMICS.

[6]  Gul A. Agha,et al.  LTLC: Linear Temporal Logic for Control , 2008, HSCC.

[7]  Vijay Kumar,et al.  Mixed-integer quadratic program trajectory generation for heterogeneous quadrotor teams , 2012, 2012 IEEE International Conference on Robotics and Automation.

[8]  Moshe Y. Vardi,et al.  Motion Planning with Complex Goals , 2011, IEEE Robotics & Automation Magazine.

[9]  Christel Baier,et al.  Principles of model checking , 2008 .

[10]  J. Lofberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004, 2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No.04CH37508).

[11]  Marco Bozzano,et al.  Verifying Industrial Hybrid Systems with MathSAT , 2005, BMC@CAV.

[12]  Calin Belta,et al.  Controlling a Class of Nonlinear Systems on Rectangles , 2006, IEEE Transactions on Automatic Control.

[13]  Ricardo G. Sanfelice,et al.  Optimal control of Mixed Logical Dynamical systems with Linear Temporal Logic specifications , 2008, 2008 47th IEEE Conference on Decision and Control.

[14]  Armin Biere,et al.  Symbolic Model Checking without BDDs , 1999, TACAS.

[15]  Richard M. Murray,et al.  Optimal Control of Nonlinear Systems with Temporal Logic Specifications , 2016, ISRR.

[16]  Ufuk Topcu,et al.  TuLiP: a software toolbox for receding horizon temporal logic planning , 2011, HSCC '11.

[17]  George J. Pappas,et al.  Bounded Model Checking of Hybrid Dynamical Systems , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[18]  Vijay Kumar,et al.  Minimum snap trajectory generation and control for quadrotors , 2011, 2011 IEEE International Conference on Robotics and Automation.

[19]  Alberto Bemporad,et al.  Control of systems integrating logic, dynamics, and constraints , 1999, Autom..

[20]  George J. Pappas,et al.  Discrete abstractions of hybrid systems , 2000, Proceedings of the IEEE.

[21]  Viktor Schuppan,et al.  Linear Encodings of Bounded LTL Model Checking , 2006, Log. Methods Comput. Sci..

[22]  John T. Betts,et al.  Practical Methods for Optimal Control and Estimation Using Nonlinear Programming , 2009 .

[23]  Calin Belta,et al.  A Fully Automated Framework for Control of Linear Systems from Temporal Logic Specifications , 2008, IEEE Transactions on Automatic Control.