Effect of processing technique on the transport and mechanical properties of graphite nanoplatelet/rubbery epoxy composites for thermal interface applications

Abstract Graphite nanoplatelet (GNP)/rubbery epoxy composites were fabricated by mechanical mixer (MM) and dual asymmetric centrifuge speed mixer (SM). The properties of the GNP/rubbery epoxy were compared with GNP/glassy epoxy composites. The thermal conductivity of GNP/rubbery epoxy composite (25 wt.% GNP, particle size 15 μm) reached 2.35 W m−1 K−1 compared to 0.1795 W m−1 K−1 for rubbery epoxy. Compared with GNP/rubbery epoxy composite, at 20 wt.%, GNP/glassy epoxy composite has a slightly lower thermal conductivity but an electrical conductivity that is 3 orders of magnitude higher. The viscosity of rubbery epoxy is 4 times lower than that of glassy epoxy and thus allows higher loading. The thermal and electrical conductivities of composites produced by MM are slightly higher than those produced by SM due to greater shearing of GNPs in MM, which results in better dispersed GNPs. Compression and hardness testing showed that GNPs increase the compressive strength of rubbery epoxy ∼2 times without significantly affecting the compressive strain and hardness. The GNP/glassy epoxy composites are 40 times stiffer than the GNP/rubbery epoxy composites. GNP/rubbery epoxy composites with their high thermal conductivity, low electrical conductivity, low viscosity before curing and high conformability are promising thermal interface materials.

[1]  S. Stankovich,et al.  Graphene-based composite materials , 2006, Nature.

[2]  M. Raza,et al.  Graphite nanoplatelet/silicone composites for thermal interface applications , 2010, 2010 International Symposium on Advanced Packaging Materials: Microtech (APM).

[3]  M. Itkis,et al.  Graphite Nanoplatelet−Epoxy Composite Thermal Interface Materials , 2007 .

[4]  Mica Grujicic,et al.  The effect of thermal contact resistance on heat management in the electronic packaging , 2005 .

[5]  K. Goodson,et al.  Managing heat for electronics , 2005 .

[6]  S. Gustafsson Transient plane source techniques for thermal conductivity and thermal diffusivity measurements of solid materials , 1991 .

[7]  C. Macosko,et al.  Graphene/Polymer Nanocomposites , 2010 .

[8]  Jang‐Kyo Kim,et al.  Hybrid nanocomposites containing carbon nanotubes and graphite nanoplatelets , 2008 .

[9]  R. Prasher,et al.  Thermal contact resistance of cured gel polymeric thermal interface material , 2004, The Ninth Intersociety Conference on Thermal and Thermomechanical Phenomena In Electronic Systems (IEEE Cat. No.04CH37543).

[10]  D.D.L. Chung,et al.  Graphite nanoplatelet pastes vs. carbon black pastes as thermal interface materials , 2009 .

[11]  L. Brinson,et al.  Functionalized graphene sheets for polymer nanocomposites. , 2008, Nature nanotechnology.

[12]  Carbon-black thixotropic thermal pastes for improving thermal contacts , 2005 .

[13]  Anthony Kelly,et al.  Comprehensive composite materials , 1999 .

[14]  C. N. Lau,et al.  Superior thermal conductivity of single-layer graphene. , 2008, Nano letters.

[15]  Luqi Liu,et al.  Rubbery and glassy epoxy resins reinforced with carbon nanotubes , 2005 .

[16]  L. Drzal,et al.  Multifunctional polypropylene composites produced by incorporation of exfoliated graphite nanoplatelets , 2007 .

[17]  Ravi Prasher,et al.  Thermal Interface Materials: Historical Perspective, Status, and Future Directions , 2006, Proceedings of the IEEE.

[18]  K. Lafdi,et al.  Use of exfoliated graphite filler to enhance polymer physical properties , 2007 .

[19]  J. Cavaillé,et al.  Reinforcement effects of vapour grown carbon nanofibres as fillers in rubbery matrices , 2005 .

[20]  D. Chung,et al.  Effect of carbon black structure on the effectiveness of carbon black thermal interface pastes , 2007 .

[21]  Dajun Wu,et al.  The electrical properties of graphite nanosheet filled immiscible polymer blends , 2007 .

[22]  M. Mahalingam Thermal management in semiconductor device packaging , 1985, Proceedings of the IEEE.

[23]  M. Inoue,et al.  Recent progress of thermal interface materials , 2008, 2008 2nd Electronics System-Integration Technology Conference.

[24]  Hui-Ming Cheng,et al.  Synthesis of high-quality graphene with a pre-determined number of layers , 2009 .

[25]  B. Z. Jang,et al.  Processing of nanographene platelets (NGPs) and NGP nanocomposites: a review , 2008, Journal of Materials Science.

[26]  I. Daniel,et al.  Processing of expanded graphite reinforced polymer nanocomposites , 2006 .

[27]  R. Shanks,et al.  Structural, mechanical and dielectric properties of poly(ethylene-co-methyl acrylate-co-acrylic acid) graphite oxide nanocomposites , 2005 .

[28]  R. Ruoff,et al.  Graphene-based polymer nanocomposites , 2011 .

[29]  David P. Anderson,et al.  Improved thermal conductivity for chemically functionalized exfoliated graphite/epoxy composites , 2008 .