Gaussian Mixtures Match and Fusion Algorithms for Multi-Sensor Multi-Target Tracking

The results of single sensor Gaussian Mixture PHD Tracker (GM-PHDT) will deteriorate when tracking targets in dense clutter and low detection rate environments. In this work, we propose three multi-sensor multi-target GM-PHD fusion algorithms. For the proposed algorithms, we obtain the multi-sensor posterior GMs by fusing the matched GMs from multiple sensors. Specifically, the GM matching and fusing methods are proposed to fullfill the applicable GM-PHD algorithms. The simulation results demonstrated the efficiency of the proposed algorithms

[1]  Yaakov Bar-Shalom,et al.  Multitarget-Multisensor Tracking: Applications and Advances , 1992 .

[2]  Thia Kirubarajan,et al.  Multisensor particle filter cloud fusion for multitarget tracking , 2008, 2008 11th International Conference on Information Fusion.

[3]  Y. Bar-Shalom,et al.  Tracking in a cluttered environment with probabilistic data association , 1975, Autom..

[4]  Yaakov Bar-Shalom,et al.  Sonar tracking of multiple targets using joint probabilistic data association , 1983 .

[5]  Ning Ma,et al.  Multi-Sensor Joint Detection and Tracking with the Bernoulli Filter , 2012, IEEE Transactions on Aerospace and Electronic Systems.

[6]  Ronald P. S. Mahler,et al.  Statistical Multisource-Multitarget Information Fusion , 2007 .

[7]  Pramod K. Varshney,et al.  Multisensor Data Fusion , 1997, IEA/AIE.

[8]  Ba-Ngu Vo,et al.  Generalized Labeled Multi-Bernoulli Approximation of Multi-Object Densities , 2014, IEEE Transactions on Signal Processing.

[9]  S.S. Blackman,et al.  Multiple hypothesis tracking for multiple target tracking , 2004, IEEE Aerospace and Electronic Systems Magazine.

[10]  James Llinas,et al.  Handbook of Multisensor Data Fusion , 2001 .

[11]  Junping Du,et al.  Gaussian mixture PHD filter for multi-sensor multi-target tracking with registration errors , 2013, Signal Process..

[12]  Samuel J. Davey,et al.  A Comparison of Detection Performance for Several Track-before-Detect Algorithms , 2008, 2008 11th International Conference on Information Fusion.

[13]  Ronald Mahler The multisensor PHD filter: II. Erroneous solution via Poisson magic , 2009, Defense + Commercial Sensing.

[14]  R. Mahler Multitarget Bayes filtering via first-order multitarget moments , 2003 .

[15]  A. Doucet,et al.  Sequential Monte Carlo methods for multitarget filtering with random finite sets , 2005, IEEE Transactions on Aerospace and Electronic Systems.

[16]  Ba-Ngu Vo,et al.  Analytic Implementations of the Cardinalized Probability Hypothesis Density Filter , 2007, IEEE Transactions on Signal Processing.

[17]  Ronald P. S. Mahler,et al.  Random Set Theory for Target Tracking and Identification , 2001 .

[18]  Audrey Giremus,et al.  Multi-target tracking using a PHD-based joint tracking and classification algorithm , 2016, 2016 IEEE Radar Conference (RadarConf).

[19]  Seung-Woo Seo,et al.  Robust Multitarget Tracking Scheme Based on Gaussian Mixture Probability Hypothesis Density Filter , 2016, IEEE Transactions on Vehicular Technology.

[20]  Qian Zhang,et al.  Improved Bearings-Only Multi-Target Tracking with GM-PHD Filtering , 2016, Sensors.

[21]  Mark R. Morelande,et al.  Distributed multi-target tracking via generalized multi-Bernoulli random finite sets , 2015, 2015 18th International Conference on Information Fusion (Fusion).

[22]  Dongliang Peng,et al.  An Unbalanced Weighted Sequential Fusing Multi-Sensor GM-PHD Algorithm , 2019, Sensors.

[23]  Dominique Heurguier,et al.  Multi-sensor PHD: Construction and implementation by space partitioning , 2011, 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[24]  Penina Axelrad,et al.  Measurement-based Birth Model for a Space Object Cardinalized Probability Hypothesis Density Filter , 2014 .

[25]  Ronald P. S. Mahler,et al.  Advances in Statistical Multisource-Multitarget Information Fusion , 2014 .

[26]  Xin Chen,et al.  Multitarget Multisensor Tracking , 2014 .

[27]  D.E. Clark,et al.  An Efficient Track Management Scheme for the Gaussian-Mixture Probability Hypothesis Density Tracker , 2006, 2006 Fourth International Conference on Intelligent Sensing and Information Processing.

[28]  James M. Rehg,et al.  A multiple hypothesis approach to figure tracking , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).