Background of Air Insulation Prediction Research

The background of air insulation prediction research is briefly reviewed in this chapter, including the research and development on air discharge tests, discharge theories and physical models. Some beneficial inspirations extracted from the existing researches are concluded. The research assumption of air insulation prediction is described, mainly including the research ideas, implementation method and key technologies. The contents of this book is briefly introduced.

[1]  V. Cooray,et al.  A simplified physical model to determine the lightning upward connecting leader inception , 2006, IEEE Transactions on Power Delivery.

[2]  J. Meek,et al.  Electrical breakdown of gases , 1953 .

[3]  M. Abdel-Salam,et al.  Corona-induced pressures, potentials, fields and currents in electrostatic precipitator configurations , 2007 .

[4]  F.A.M. Rizk,et al.  A model for switching impulse leader inception and breakdown of long air-gaps , 1989 .

[5]  Farouk A. M. Rizk,et al.  Switehing Impulse Strength of Air Insulation: Leader Inception Criterion , 1989, IEEE Power Engineering Review.

[6]  E. Garbagnati,et al.  Switching Impulse Strength of Phase-to-Earth UHV External Insulation Research at the 1000 kV Project , 1985, IEEE Power Engineering Review.

[7]  J. Lowke,et al.  Onset corona fields and electrical breakdown criteria , 2003 .

[8]  Luigi Paris,et al.  Switching and Lightning Impulse Discharge Characteristics of Large Air Gaps and Long Insulator Strings , 1968 .

[9]  Issouf Fofana,et al.  A model for long air gap discharge using an equivalent electrical network , 1996 .

[10]  Iu. P. Raizer Gas Discharge Physics , 1991 .

[11]  L. Arevalo,et al.  A consistent approach to estimate the breakdown voltage of high voltage electrodes under positive switching impulses , 2013 .

[12]  A. Beroual,et al.  A predictive model of the positive discharge in long air gaps under pure and oscillating impulse shapes , 1997 .

[13]  John Samuel Forrest,et al.  A Discussion on recent advances in heavy electrical plant - Switching surges and air insulation , 1973, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[14]  V. Cooray,et al.  A self-consistent upward leader propagation model , 2006 .

[15]  P. Ortega,et al.  Charge-voltage relationship of the first impulse corona in long airgaps , 2005 .

[16]  A Beroual,et al.  Discharge in Long Air Gaps Modelling and applications , 2016 .

[17]  G. Carrara,et al.  Switching surge strength of large air gaps: A physical approach , 1976, IEEE Transactions on Power Apparatus and Systems.

[18]  G. Gallet,et al.  General expression for positive switching impulse strength valid up to extra long air gaps , 1975, IEEE Transactions on Power Apparatus and Systems.

[19]  A. Bondiou-Clergerie,et al.  A simplified model for the simulation of positive-spark development in long air gaps , 1997 .

[20]  F. Peek Dielectric Phenomena in High Voltage Engineering , 2002 .

[21]  Luigi Paris Influence of Air Gap Characteristics on Line-to-Ground Switching Surge Strength , 1967 .

[22]  Isamu Kishizima,et al.  New Facilities for Phase-to-Phase Switching Impulse Tests and Some Test Results , 1984, IEEE Power Engineering Review.

[23]  R. C. Klewe,et al.  A model of impulse breakdown in divergent field geometries , 1972 .

[24]  B. Hutzler,et al.  Leader Propagation Model for Predetermination of Switching Surge Flashover Voltage of Large Air Gaps , 1978, IEEE Transactions on Power Apparatus and Systems.

[25]  I. Gallimberti,et al.  Fundamental processes in long air gap discharges , 2002 .

[26]  H. Raether Electron avalanches and breakdown in gases , 1964 .

[27]  He Hengxin,et al.  Research Progress of Long Air Gap Discharges , 2013 .

[28]  Issouf Fofana,et al.  Modelling of the leader current with an equivalent electrical network , 1995 .

[29]  I. Fofana,et al.  Application of dynamic models to predict switching impulse withstand voltages of long air gaps , 2013, IEEE Transactions on Dielectrics and Electrical Insulation.

[30]  I. Gallimberti,et al.  Theoretical modelling of the development of the positive spark in long gaps , 1994 .

[31]  G. Podporkyn,et al.  Analysis of Experimental Data on the Electric Strength of Long Air Gaps , 1979, IEEE Transactions on Power Apparatus and Systems.

[32]  Vernon Cooray,et al.  Numerical simulation of long laboratory sparks generated by positive switching impulses , 2009 .

[33]  John S. Townsend,et al.  The Theory of Ionization of Gases by Collision , 2007 .

[34]  I. Gallimberti A computer model for streamer propagation , 1972 .

[35]  L. Lan,et al.  Statistical characteristics of breakdowns in long air gaps at negative switching impulses , 2016, IEEE Transactions on Dielectrics and Electrical Insulation.

[36]  L. Loeb,et al.  The mechanism of the electric spark , 1941 .

[37]  Ronald Waters,et al.  Negative discharges in long air gaps at Les Renardières : 1978 results , 1981 .

[38]  I. Gallimberti,et al.  The mechanism of the long spark formation , 1979 .

[39]  Vernon Cooray,et al.  A new static calculation of the streamer region for long spark gaps , 2012 .