Hierarchical MnO2/SnO2 heterostructures for a novel free-standing ternary thermite membrane.

We report the synthesis of a novel hierarchical MnO2/SnO2 heterostructures via a hydrothermal method. Secondary SnO2 nanostructure grows epitaxially on the surface of MnO2 backbones without any surfactant, which relies on the minimization of surface energy and interfacial lattice mismatch. Detailed investigations reveal that the cover density and morphology of the SnO2 nanostructure can be tailored by changing the experimental parameter. Moreover, we demonstrate a bottom-up method to produce energetic nanocomposites by assembling nanoaluminum (n-Al) and MnO2/SnO2 hierarchical nanostructures into a free-standing MnO2/SnO2/n-Al ternary thermite membrane. This assembled approach can significantly reduce diffusion distances and increase their intimacy between the components. Different thermite mixtures were investigated to evaluate the corresponding activation energies using DSC techniques. The energy performance of the ternary thermite membrane can be manipulated through different components of the MnO2/SnO2 heterostructures. Overall, our work may open a new route for new energetic materials.

[1]  Xun Wang,et al.  Nanowire Membrane-based Nanothermite: towards Processable and Tunable Interfacial Diffusion for Solid State Reactions , 2013, Scientific Reports.

[2]  Gengfeng Zheng,et al.  Hierarchical SnO2–Fe2O3 heterostructures as lithium-ion battery anodes , 2012 .

[3]  Xun Wang,et al.  Hydrogen Bond Nanoscale Networks Showing Switchable Transport Performance , 2012, Scientific Reports.

[4]  Chunhua Yan,et al.  Interfacial growth behavior of SnO2 nanorods on {11 ̅20} and {10 ̅10} facets of α-Fe2O3. , 2012, Nanoscale.

[5]  Weiwei Zhou,et al.  Controlled growth of SnO₂@Fe₂O₃ double-sided nanocombs as anodes for lithium-ion batteries. , 2012, Nanoscale.

[6]  Shu-Hong Yu,et al.  Macroscopic-scale assembled nanowire thin films and their functionalities. , 2012, Chemical reviews.

[7]  Carole Rossi,et al.  High‐Energy Al/CuO Nanocomposites Obtained by DNA‐Directed Assembly , 2012 .

[8]  Wen-Jun Zhang,et al.  Highly active carbonaceous nanofibers: a versatile scaffold for constructing multifunctional free-standing membranes. , 2011, ACS nano.

[9]  B. Siegert,et al.  Safer energetic materials by a nanotechnological approach. , 2011, Nanoscale.

[10]  H. Hng,et al.  Epitaxial Growth of Branched α‐Fe2O3/SnO2 Nano‐Heterostructures with Improved Lithium‐Ion Battery Performance , 2011 .

[11]  J. Kang,et al.  Fabrication of the SnO2/α-Fe2O3 Hierarchical Heterostructure and Its Enhanced Photocatalytic Property , 2011 .

[12]  N. Thadhani,et al.  Kinetic study of thermal- and impact-initiated reactions in Al–Fe2O3 nanothermite , 2010 .

[13]  A. Heijden,et al.  Modification and characterization of (energetic) nanomaterials , 2010 .

[14]  F. Huang,et al.  Hydrothermal synthesis, structural characteristics, and enhanced photocatalysis of SnO(2)/alpha-Fe(2)O(3) semiconductor nanoheterostructures. , 2010, ACS nano.

[15]  E. Dreizin,et al.  Metal-based reactive nanomaterials , 2009 .

[16]  R. Agarwal,et al.  Heterointerfaces in semiconductor nanowires. , 2008, Small.

[17]  Lifeng Cui,et al.  Novel Nanocrystal Heterostructures: Crystallographic-Oriented Growth of SnO2 Nanorods onto α-Fe2O3 Nanohexahedron , 2008 .

[18]  Carole Rossi,et al.  Development of a nano-Al∕CuO based energetic material on silicon substrate , 2007 .

[19]  Z. L. Wang,et al.  Mismatch Strain Induced Formation of ZnO/ZnS Heterostructured Rings , 2007 .

[20]  Kaili Zhang,et al.  Nanoenergetic Materials for MEMS: A Review , 2007, Journal of Microelectromechanical Systems.

[21]  L. Chou,et al.  RuO2 Nanowires and RuO2/TiO2 Core/Shell Nanowires: From Synthesis to Mechanical, Optical, Electrical, and Photoconductive Properties , 2007 .

[22]  K. Sun,et al.  Kinetics of thermite reaction in Al-Fe2O3 system , 2006 .

[23]  M. Pantoya,et al.  Effect of nanocomposite synthesis on the combustion performance of a ternary thermite. , 2005, The journal of physical chemistry. B.

[24]  Ling-Dong Sun,et al.  Hierarchical assembly of SnO2 nanorod arrays on alpha-Fe2O3 nanotubes: a case of interfacial lattice compatibility. , 2005, Journal of the American Chemical Society.

[25]  Lan-sun Zheng,et al.  Tailoring the optical property by a three-dimensional epitaxial heterostructure: a case of ZnO/SnO2. , 2005, Journal of the American Chemical Society.

[26]  M. Zachariah,et al.  Tuning the reactivity of energetic nanoparticles by creation of a core-shell nanostructure. , 2005, Nano letters.

[27]  M. Zachariah,et al.  Enhancing the Rate of Energy Release from NanoEnergetic Materials by Electrostatically Enhanced Assembly , 2004 .

[28]  Lin-Wang Wang,et al.  Colloidal nanocrystal heterostructures with linear and branched topology , 2004, Nature.

[29]  Wei Lu,et al.  Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures , 2004, Nature.

[30]  R. Simpson,et al.  A versatile sol–gel synthesis route to metal–silicon mixed oxide nanocomposites that contain metal oxides as the major phase , 2003 .

[31]  Marco J. Starink,et al.  The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods , 2003 .

[32]  Ling-Dong Sun,et al.  Low‐Temperature Fabrication of Highly Crystalline SnO2 Nanorods , 2003 .

[33]  R. Armstrong,et al.  Enhanced Propellant Combustion with Nanoparticles , 2003 .

[34]  Zhifeng Ren,et al.  Hierarchical ZnO Nanostructures , 2002 .

[35]  Yadong Li,et al.  Selected-Control Hydrothermal Synthesis of α- and β-MnO2 Single Crystal Nanowires , 2002 .

[36]  R. Simpson,et al.  Nanostructured energetic materials using sol-gel methodologies , 2001 .