Soft X‐ray polarization in thermal magnetar emission

Emission spectra from magnetars in the soft X-ray band likely contain a thermal component emerging directly from the neutron star (NS) surface. However, the lack of observed absorption-like features in quiescent spectra makes it difficult to directly constrain physical properties of the atmosphere. We argue that future X-ray polarization measurements represent a promising technique for directly constraining the magnetar magnetic field strength and geometry. We construct models of the observed polarization signal from a finite surface hotspot, using the latest NS atmosphere models for magnetic fields B = 4 x 10 13 ―5 × 10 14 G. Our calculations are strongly dependent on the NS magnetic field strength and geometry, and are more weakly dependent on the NS equation of state and atmosphere composition. We discuss how the complementary dependencies of phase-resolved spectroscopy and polarimetry might resolve degeneracies that currently hamper the determination of magnetar physical parameters using thermal models.

[1]  J. Geiss,et al.  The century of space science , 2001 .

[2]  October I Physical Review Letters , 2022 .

[3]  Chandra X-ray Detection of the High-Magnetic-Field Radio Pulsar PSR J1718-3718 , 2004, astro-ph/0411615.

[4]  Hydrogen Burning on Magnetar Surfaces , 2004, astro-ph/0410403.

[5]  W. Ho,et al.  Atmospheres and spectra of strongly magnetized neutron stars – II. The effect of vacuum polarization , 2002, astro-ph/0201380.

[6]  S. Mereghetti,et al.  On the Polar Caps of the Three Musketeers , 2004, astro-ph/0412662.

[7]  D. Frail,et al.  The Quiescent Counterpart of the Soft Gamma-Ray Repeater SGR 0526–66 , 2002, astro-ph/0209520.

[8]  Jeremy S. Heyl,et al.  QED and the high polarization of the thermal radiation from neutron stars , 2002 .

[9]  C. Ftaclas,et al.  Hot spots on neutron stars - The near-field gravitational lens , 1982 .

[10]  P. Seymour Black Holes, White Dwarfs and Neutron Stars: The Physics of Compact Objects , 1984 .

[11]  W. Ho,et al.  Resonant Conversion of Photon Modes Due to Vacuum Polarization in a Magnetized Plasma: Implications for X-Ray Emission from Magnetars , 2001, astro-ph/0108127.

[12]  UK.,et al.  Submitted to The Astrophysical Journal on 29/1/2005 A XMM-Newton View of the Soft Gamma-ray Repeater SGR 1806–20: Long Term Variability in the pre-Super Giant Flare Epoch , 2005 .

[13]  W. Lewin,et al.  Compact stellar X-ray sources , 2006 .

[14]  M. F. Physik,et al.  Discovery of Absorption Features in the X-Ray Spectrum of an Isolated Neutron Star , 2002, astro-ph/0206195.

[15]  Density-functional-theory calculations of matter in strong magnetic fields. II. Infinite chains and condensed matter , 2006, astro-ph/0607277.

[16]  R. Perna,et al.  The Post-Burst Awakening of the Anomalous X-Ray Pulsar in Westerlund 1 , 2007, astro-ph/0703684.

[17]  V. Kaspi,et al.  An XMM-Newton Observation of the High Magnetic Field Radio Pulsar PSR B0154+61 , 2004 .

[18]  F. Özel The Effect of Vacuum Polarization and Proton Cyclotron Resonances on Photon Propagation in Strongly Magnetized Plasmas , 2003 .

[19]  N. S. Schulz,et al.  Using the High-Resolution X-Ray Spectrum of PSR B0656+14 to Constrain the Chemical Composition of the Neutron Star Atmosphere , 2002, astro-ph/0203463.

[20]  F. Haberl The magnificent seven: magnetic fields and surface temperature distributions , 2006 .

[21]  S. R. Kulkarni,et al.  Electrodynamics of Magnetars: Implications for the Persistent X-Ray Emission and Spin-down of the Soft Gamma Repeaters and Anomalous X-Ray Pulsars , 2001, astro-ph/0110677.

[22]  Jeremy S. Heyl,et al.  The high-energy polarization-limiting radius of neutron star magnetospheres - I. Slowly rotating neutron stars , 2003, astro-ph/0302118.

[23]  T. Oosterbroek,et al.  Evidence of a Cyclotron Feature in the Spectrum of the Anomalous X-Ray Pulsar 1RXS J170849–400910 , 2003, astro-ph/0302490.

[24]  Luca Baldini,et al.  POLARIX: a small mission of x-ray polarimetry , 2006, SPIE Astronomical Telescopes + Instrumentation.

[25]  C. Thompson,et al.  Soft gamma repeaters and anomalous X-ray pulsars: magnetar candidates , 2004 .

[26]  F. Camilo,et al.  Young Neutron Stars and Their Environments , 2004 .

[27]  Detailed Spectral Analysis of the 260 ks XMM-Newton Data of 1E 1207.4–5209 and Significance of a 2.1 keV Absorption Feature , 2004, astro-ph/0407369.

[28]  A Braking Index for the Young, High Magnetic Field, Rotation-Powered Pulsar in Kesteven 75 , 2006, astro-ph/0601530.

[29]  Martin C. Weisskopf,et al.  Detection of X-Ray Polarization of the Crab Nebula , 1972 .

[30]  Dany Page Surface temperature of a magnetized neutron star and interpretation of the ROSAT data. 1: Dipole fields , 1994 .

[31]  W. Ho,et al.  Transfer of Polarized Radiation in Strongly Magnetized Plasmas and Thermal Emission from Magnetars: Effect of Vacuum Polarization , 2002, astro-ph/0211315.

[32]  W. Ho,et al.  Polarized x-ray emission from magnetized neutron stars: signature of strong-field vacuum polarization. , 2003, Physical review letters.

[33]  Neutron Star Cooling , 2004, astro-ph/0409751.

[34]  W. Ho,et al.  Atmospheres and Spectra of Strongly Magnetized Neutron Stars. III. Partially Ionized Hydrogen Models , 2001, astro-ph/0104199.

[35]  A. Treves,et al.  Magnetized Atmospheres around Neutron Stars Accreting at Low Rates , 2000 .

[36]  Matthew van Adelsberg,et al.  Atmosphere models of magnetized neutron stars: QED effects, radiation spectra and polarization signals , 2006 .

[37]  R. Romani,et al.  Ultraviolet, X-Ray, and Optical Radiation from the Geminga Pulsar* , 2005, astro-ph/0502076.

[38]  Jeremy S. Heyl,et al.  Polarization evolution in strong magnetic fields , 2000 .

[39]  F. Camilo,et al.  1E 1547.0–5408: A Radio-emitting Magnetar with a Rotation Period of 2 Seconds , 2007, 0708.0002.

[40]  W. Ho,et al.  ATMOSPHERES AND SPECTRA OF STRONGLY MAGNETIZED NEUTRON STARS. III. PARTIALLY IONIZED HYDROGEN MODELS , 2003, astro-ph/0309261.

[41]  L. Stella,et al.  Three XMM-Newton observations of the anomalous X-ray pulsar 1E 1048.1-5937: Long term variations in spectrum and pulsed fraction , 2005, astro-ph/0503390.

[42]  R. N. Manchester,et al.  Discovery of Two High Magnetic Field Radio Pulsars , 1999, astro-ph/0004330.

[43]  R. Perna,et al.  Constraints on the Emission and Viewing Geometry of the Transient Anomalous X-Ray Pulsar XTE J1810–197 , 2008, 0803.2042.

[44]  University College London,et al.  X-ray spectra from magnetar candidates – I. Monte Carlo simulations in the non-relativistic regime , 2008, 0802.2647.

[45]  Padova,et al.  Resonant Cyclotron Scattering in Magnetars’ Emission , 2008, 0802.1923.

[46]  Resonant cyclotron scattering and Comptonization in neutron star magnetospheres , 2005, astro-ph/0507557.

[47]  T. Kallman,et al.  Astrophysical motivation for X-ray polarimetry , 2004 .

[48]  A. Beloborodov Gravitational Bending of Light Near Compact Objects , 2002, astro-ph/0201117.

[49]  Radiation from Condensed Surface of Magnetic Neutron Stars , 2004, astro-ph/0406001.

[50]  C. Thompson,et al.  Resonant Cyclotron Scattering in Three Dimensions and the Quiescent Nonthermal X-ray Emission of Magnetars , 2006, astro-ph/0608281.

[51]  E. Costa,et al.  An efficient photoelectric X-ray polarimeter for the study of black holes and neutron stars , 2001, Nature.

[52]  J. Drake,et al.  Bare Quark Stars or Naked Neutron Stars? The Case of RX J1856.5–3754 , 2003, astro-ph/0308326.

[53]  R. S. Wolff,et al.  Measurement of the X-ray polarization of the Crab Nebula , 1976 .