Applications of dip-pen nanolithography.

The ability to tailor the chemical composition and structure of a surface at the sub-100-nm length scale is important for studying topics ranging from molecular electronics to materials assembly, and for investigating biological recognition at the single biomolecule level. Dip-pen nanolithography (DPN) is a scanning probe microscopy-based nanofabrication technique that uniquely combines direct-write soft-matter compatibility with the high resolution and registry of atomic force microscopy (AFM), which makes it a powerful tool for depositing soft and hard materials, in the form of stable and functional architectures, on a variety of surfaces. The technology is accessible to any researcher who can operate an AFM instrument and is now used by more than 200 laboratories throughout the world. This article introduces DPN and reviews the rapid growth of the field of DPN-enabled research and applications over the past several years.

[1]  D. Eigler,et al.  Positioning single atoms with a scanning tunnelling microscope , 1990, Nature.

[2]  D. Allara,et al.  Phase Separation of Mixed-Composition Self-Assembled Monolayers into Nanometer Scale Molecular Domains , 1994 .

[3]  H. Butt,et al.  Deposition of Organic Material by the Tip of a Scanning Force Microscope , 1995 .

[4]  C. Quate,et al.  Parallel atomic force microscopy using cantilevers with integrated piezoresistive sensors and integrated piezoelectric actuators , 1995 .

[5]  Abdullah Atalar,et al.  Independent parallel lithography using the atomic force microscope , 1996 .

[6]  W. Knoll,et al.  Selective Replacement of Adsorbed Alkanethiols in Phase-Separated Binary Self-Assembled Monolayers by Electrochemical Partial Desorption , 1997 .

[7]  C. Quate,et al.  Centimeter scale atomic force microscope imaging and lithography , 1998 .

[8]  Ute Drechsler,et al.  5×5 2D AFM cantilever arrays a first step towards a Terabit storage device , 1999 .

[9]  C. Mirkin,et al.  A New Tool for Studying the in Situ Growth Processes for Self-Assembled Monolayers under Ambient Conditions , 1999 .

[10]  Hong,et al.  Multiple ink nanolithography: toward a multiple-Pen nano-plotter , 1999, Science.

[11]  Chaim N. Sukenik,et al.  Fountain pen nanochemistry: Atomic force control of chrome etching , 1999 .

[12]  Sidney R. Cohen,et al.  Nanoelectrochemical Patterning of Monolayer Surfaces: Toward Spatially Defined Self-Assembly of Nanostructures , 1999 .

[13]  Xu,et al.  "Dip-Pen" nanolithography , 1999, Science.

[14]  Ute Drechsler,et al.  The "Millipede"-More than thousand tips for future AFM storage , 2000, IBM J. Res. Dev..

[15]  Dürig,et al.  The “ Millipede ” — More than one thousand tips for future AFM data storage , 2000 .

[16]  Song Xu,et al.  Nanofabrication of self-assembled monolayers using scanning probe lithography. , 2000, Accounts of chemical research.

[17]  B. Maynor,et al.  Electrochemical AFM "dip-pen" nanolithography. , 2001, Journal of the American Chemical Society.

[18]  C. Haynes,et al.  Nanosphere Lithography: A Versatile Nanofabrication Tool for Studies of Size-Dependent Nanoparticle Optics , 2001 .

[19]  Z Li,et al.  Orthogonal assembly of nanoparticle building blocks on dip-pen nanolithographically generated templates of DNA. , 2001, Angewandte Chemie.

[20]  P. Calvert Inkjet Printing for Materials and Devices , 2001 .

[21]  C. Mirkin,et al.  Combinatorial templates generated by dip-pen nanolithography for the formation of two-dimensional particle arrays. , 2001, Angewandte Chemie.

[22]  Methods utilizing scanning probe microscope tips and products therefor or produced thereby , 2001 .

[23]  Liming Ying,et al.  Writing with DNA and protein using a nanopipet for controlled delivery. , 2002, Journal of the American Chemical Society.

[24]  P. Schwartz Molecular Transport from an Atomic Force Microscope Tip: A Comparative Study of Dip-Pen Nanolithography , 2002 .

[25]  Chad A Mirkin,et al.  Moving beyond molecules: patterning solid-state features via dip-pen nanolithography with sol-based inks. , 2002, Journal of the American Chemical Society.

[26]  S.-W. Chung,et al.  Direct Patterning of Modified Oligonucleotides on Metals and Insulators by Dip-Pen Nanolithography , 2002, Science.

[27]  James J. DeYoreo,et al.  Fabrication of Luminescent Nanostructures and Polymer Nanowires Using Dip-Pen Nanolithography , 2002 .

[28]  Chad A. Mirkin,et al.  Electrochemical Whittling of Organic Nanostructures , 2002 .

[29]  H. Rothuizen,et al.  "Millipede": a MEMS-based scanning-probe data-storage system , 2002, Digest of the Asia-Pacific Magnetic Recording Conference.

[30]  Thomas W. Kenny,et al.  Design of atomic force microscope cantilevers for combined thermomechanical writing and thermal reading in array operation , 2002 .

[31]  Chad A. Mirkin,et al.  Arrays of Magnetic Nanoparticles Patterned via “Dip‐Pen” Nanolithography , 2002 .

[32]  Chad A. Mirkin,et al.  Electrostatically Driven Dip‐Pen Nanolithography of Conducting Polymers , 2002 .

[33]  C. Mirkin,et al.  Protein Nanoarrays Generated By Dip-Pen Nanolithography , 2002, Science.

[34]  Site-directed exchange studies with combinatorial libraries of nanostructures. , 2002, Journal of the American Chemical Society.

[35]  Chad A. Mirkin,et al.  A MEMS nanoplotter with high-density parallel dip-pen nanolithography probe arrays , 2002 .

[36]  W. Häberle,et al.  The "millipede" - nanotechnology entering data storage , 2002 .

[37]  L. Whitman,et al.  Thiol diffusion and the role of humidity in "Dip Pen Nanolithography". , 2002, Physical review letters.

[38]  A. Noy,et al.  Effect of dissolution kinetics on feature size in dip-pen nanolithography. , 2002, Physical review letters.

[39]  M. Ratner,et al.  Liquid meniscus condensation in dip-pen nanolithography , 2002 .

[40]  M. Shim,et al.  Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[41]  Chad A Mirkin,et al.  Protein nanostructures formed via direct-write dip-pen nanolithography. , 2003, Journal of the American Chemical Society.

[42]  Chad A. Mirkin,et al.  Nanopatterning of “Hard” Magnetic Nanostructures via Dip-Pen Nanolithography and a Sol-Based Ink , 2003 .

[43]  Liming Ying,et al.  Multicomponent submicron features of biomolecules created by voltage controlled deposition from a nanopipet. , 2003, Journal of the American Chemical Society.

[44]  Chad A. Mirkin,et al.  Dip-Pen Nanolithography: What Controls Ink Transport? , 2003 .

[45]  Scanning Probe Contact Printing , 2003 .

[46]  John E. Johnson,et al.  Fabrication of assembled virus nanostructures on templates of chemoselective linkers formed by scanning probe nanolithography. , 2003, Journal of the American Chemical Society.

[47]  Stephan Krämer,et al.  Scanning probe lithography using self-assembled monolayers. , 2003, Chemical reviews.

[48]  Chad A. Mirkin,et al.  Nanopatterning the chemospecific immobilization of cowpea mosaic virus capsid , 2003 .

[49]  Rajesh R Naik,et al.  Immobilization of histidine-tagged proteins on nickel by electrochemical dip pen nanolithography. , 2003, Journal of the American Chemical Society.

[50]  Chad A Mirkin,et al.  Direct-write dip-pen nanolithography of proteins on modified silicon oxide surfaces. , 2003, Angewandte Chemie.

[51]  G. Schatz,et al.  Anomalous surface diffusion in nanoscale direct deposition processes. , 2003, Physical review letters.

[52]  Wahyu Setyawan,et al.  Nanotube electronics: Large-scale assembly of carbon nanotubes , 2003, Nature.

[53]  George C Schatz,et al.  Capillary force on a nanoscale tip in dip-pen nanolithography. , 2003, Physical review letters.

[54]  George C Schatz,et al.  How narrow can a meniscus be? , 2004, Physical review letters.

[55]  P. Sheehan,et al.  Dip‐Pen Nanolithography of Chemical Templates on Silicon Oxide , 2004 .

[56]  Chad A Mirkin,et al.  The evolution of dip-pen nanolithography. , 2004, Angewandte Chemie.

[57]  Debjyoti Banerjee,et al.  Active probes and microfluidic ink delivery for Dip Pen Nanolithography , 2004, SPIE Micro + Nano Materials, Devices, and Applications.

[58]  M. Ratner,et al.  Capillary force in atomic force microscopy. , 2004, The Journal of chemical physics.

[59]  Jeonghan Kim,et al.  Enzymatic nanolithography of a self-assembled oligonucleotide monolayer on gold. , 2004, Journal of the American Chemical Society.

[60]  P. Vettiger,et al.  Wafer-scale microdevice transfer/interconnect: its application in an AFM-based data-storage system , 2004, Journal of Microelectromechanical Systems.

[61]  Holger Schönherr,et al.  Micro- and nanofabrication of robust reactive arrays based on the covalent coupling of dendrimers to activated monolayers. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[62]  Brent A. Nelson,et al.  Nanoscale deposition of solid inks via thermal dip pen nanolithography , 2004 .

[63]  Chenguang Lu,et al.  Controlled growth of long GaN nanowires from catalyst patterns fabricated by dip-pen nanolithographic techniques , 2004 .

[64]  C. Mirkin,et al.  Surface-bound porphyrazines: controlling reduction potentials of self-assembled monolayers through molecular proximity/orientation to a metal surface. , 2004, Journal of the American Chemical Society.

[65]  Zhuang Li,et al.  Direct patterning of rhodamine 6G molecules on mica by dip-pen nanolithography , 2004 .

[66]  Chad A. Mirkin,et al.  The use of nanoarrays for highly sensitive and selective detection of human immunodeficiency virus type 1 in plasma , 2004 .

[67]  Chad A. Mirkin,et al.  Parallel dip-pen nanolithography with arrays of individually addressable cantilevers , 2004 .

[68]  D. Kaplan,et al.  Nanoscale Surface Patterning of Enzyme‐Catalyzed Polymeric Conducting Wires , 2004 .

[69]  Chad A. Mirkin,et al.  Thermally actuated probe array for parallel dip-pen nanolithography , 2004 .

[70]  D. Reinhoudt,et al.  Writing patterns of molecules on molecular printboards. , 2004, Angewandte Chemie.

[71]  P. Schwartz,et al.  Effect of Environmental Conditions on Dip Pen Nanolithography of Mercaptohexadecanoic Acid , 2004 .

[72]  A. Ivanisevic,et al.  Properties of Polyelectrolyte Templates Generated by Dip-Pen Nanolithography and Microcontact Printing , 2004 .

[73]  Chad A. Mirkin,et al.  AFM Study of Water Meniscus Formation between an AFM Tip and NaCl Substrate , 2004 .

[74]  Chang Liu,et al.  A mould-and-transfer technology for fabricating scanning probe microscopy probes , 2004 .

[75]  SiOx Surfaces with Lithographic Features Composed of a TAT Peptide , 2004 .

[76]  Dip Pen Nanolithography Stamp Tip , 2004 .

[77]  R. Maoz,et al.  Planned Nanostructures of Colloidal Gold via Self-Assembly on Hierarchically Assembled Organic Bilayer Template Patterns with In-situ Generated Terminal Amino Functionality , 2004 .

[78]  Tarek El-Aguizy,et al.  Large-Scale Assembly of Carbon Nanotubes , 2004 .

[79]  Yi Zhang,et al.  A massively parallel electrochemical approach to the miniaturization of organic micro- and nanostructures on surfaces. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[80]  N. Wu,et al.  Dip-pen nanopatterning of photosensitive conducting polymer using a monomer ink , 2004 .

[81]  G. U. Kulkarni,et al.  Dip-pen nanolithography with magnetic Fe2O3 nanocrystals , 2004 .

[82]  G. Whitesides,et al.  New approaches to nanofabrication: molding, printing, and other techniques. , 2005, Chemical reviews.

[83]  Mark A Ratner,et al.  Top-down meets bottom-up: dip-pen nanolithography and DNA-directed assembly of nanoscale electrical circuits. , 2005, Small.

[84]  Xuemei Li,et al.  Creation of cadmium sulfide nanostructures using AFM dip-pen nanolithography. , 2005, The journal of physical chemistry. B.

[85]  B. Ocko,et al.  Electro pen nanolithography. , 2005, Journal of the American Chemical Society.

[86]  D. Kaplan,et al.  Peroxidase-catalyzed in situ polymerization of surface orientated caffeic acid. , 2005, Journal of the American Chemical Society.

[87]  C. Mirkin,et al.  Nanostructured Polyelectrolyte Multilayer Organic Thin Films Generated via Parallel Dip‐Pen Nanolithography , 2005 .

[88]  Chad A Mirkin,et al.  Nanoarrays of single virus particles. , 2005, Angewandte Chemie.

[89]  Chang Liu,et al.  Scanning probe lithography tips with spring-on-tip designs: Analysis, fabrication, and testing , 2005 .

[90]  A. Ivanisevic,et al.  Fabrication of positively and negatively charged polyelectrolyte structures by dip-pen nanolithography , 2005 .

[91]  D. Reinhoudt,et al.  Supramolecular microcontact printing and dip-pen nanolithography on molecular printboards. , 2005, Chemistry.

[92]  D. Reinhoudt,et al.  Molecular printboards on silicon oxide: lithographic patterning of cyclodextrin monolayers with multivalent, fluorescent guest molecules. , 2005, Small.

[93]  Liming Ying,et al.  The scanned nanopipette: a new tool for high resolution bioimaging and controlled deposition of biomolecules. , 2005, Physical chemistry chemical physics : PCCP.

[94]  Gengfeng Zheng,et al.  Multiplexed electrical detection of cancer markers with nanowire sensor arrays , 2005, Nature Biotechnology.

[95]  Chad A Mirkin,et al.  Sub-100 nm, centimeter-scale, parallel dip-pen nanolithography. , 2005, Small.

[96]  D. Ginger,et al.  Patterning phase separation in polymer films with dip-pen nanolithography. , 2005, Journal of the American Chemical Society.

[97]  Chad A Mirkin,et al.  The Controlled Evolution of a Polymer Single Crystal , 2005, Science.

[98]  Chad A Mirkin,et al.  Methods for fabricating microarrays of motile bacteria. , 2005, Small.

[99]  Paul S Weiss,et al.  Transport rates vary with deposition time in dip-pen nanolithography. , 2005, The journal of physical chemistry. B.

[100]  Sami Alom Ruiz,et al.  Nanotechnology for Cell–Substrate Interactions , 2006, Annals of Biomedical Engineering.

[101]  W. L. Wu,et al.  The Controlled Evolution of a Polymer Single Crystal , 2005 .

[102]  Hongzhou Jiang,et al.  Dip-pen patterning and surface assembly of peptide amphiphiles. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[103]  Xingcheng Xiao,et al.  Novel ultrananocrystalline diamond probes for high-resolution low-wear nanolithographic techniques. , 2005, Small.

[104]  Chang Liu,et al.  Multifunctional probe array for nano patterning and imaging. , 2005, Nano letters.

[105]  A. Ivanisevic,et al.  TAT peptide immobilization on gold surfaces: a comparison study with a thiolated peptide and alkylthiols using AFM, XPS, and FT-IRRAS. , 2005, The journal of physical chemistry. B.

[106]  Chad A Mirkin,et al.  On-Wire Lithography , 2005, Science.

[107]  David N Reinhoudt,et al.  Engineering silicon oxide surfaces using self-assembled monolayers. , 2005, Angewandte Chemie.

[108]  T. B. Higgins,et al.  Spontaneous "phase separation" of patterned binary alkanethiol mixtures. , 2005, Journal of the American Chemical Society.

[109]  Minbaek Lee,et al.  Large‐Scale “Surface‐Programmed Assembly” of Pristine Vanadium Oxide Nanowire‐Based Devices , 2005 .

[110]  Horacio D Espinosa,et al.  A nanofountain probe with Sub-100 nm molecular writing resolution. , 2005, Small.

[111]  Andrea Notargiacomo,et al.  Nanofabrication by scanning probe microscope lithography: A review , 2005 .

[112]  Paul S Weiss,et al.  Double-ink dip-pen nanolithography studies elucidate molecular transport. , 2006, Journal of the American Chemical Society.

[113]  David Bullen,et al.  Electrostatically actuated dip pen nanolithography probe arrays , 2006 .

[114]  Seunghun Hong,et al.  Modeling collective behavior of molecules in nanoscale direct deposition processes. , 2006, The Journal of chemical physics.

[115]  Itamar Willner,et al.  Synthesis of Nanowires Using Dip‐Pen Nanolithography and Biocatalytic Inks , 2006 .

[116]  G. Schatz,et al.  Phase of molecular ink in nanoscale direct deposition processes. , 2006, The Journal of chemical physics.

[117]  D. Banerjee,et al.  Functional extensions of Dip Pen NanolithographyTM: active probes and microfluidic ink delivery , 2006 .

[118]  Soo-Ik Chang,et al.  Protein nanoarray on Prolinker™ surface constructed by atomic force microscopy dip‐pen nanolithography for analysis of protein interaction , 2006, Proteomics.

[119]  George C Schatz,et al.  Controlling the shape, orientation, and linkage of carbon nanotube features with nano affinity templates , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[120]  Chad A Mirkin,et al.  Massively parallel dip-pen nanolithography with 55 000-pen two-dimensional arrays. , 2006, Angewandte Chemie.

[121]  Chad A Mirkin,et al.  Dip-pen nanolithography of high-melting-temperature molecules. , 2006, The journal of physical chemistry. B.

[122]  Jane Frommer,et al.  Ultrafast molecule sorting and delivery by atomic force microscopy , 2006 .

[123]  Brent A. Nelson,et al.  Direct deposition of continuous metal nanostructures by thermal dip-pen nanolithography , 2006 .

[124]  H. Espinosa,et al.  Design and fabrication of a novel microfluidic nanoprobe , 2006, Journal of Microelectromechanical Systems.

[125]  DPN-generated nanostructures as positive resists for preparing lithographic masters or hole arrays. , 2006, Nano letters.

[126]  Seunghun Hong,et al.  Growth dynamics of self-assembled monolayers in dip-pen nanolithography. , 2006, The journal of physical chemistry. B.

[127]  Harald Fuchs,et al.  Massively parallel dip-pen nanolithography of heterogeneous supported phospholipid multilayer patterns. , 2007, Small.

[128]  L. Senelick It (review) , 2008 .