Fixed-Parameter Tractability, A Prehistory,
暂无分享,去创建一个
[1] Neil Robertson,et al. Graph Minors .XIII. The Disjoint Paths Problem , 1995, J. Comb. Theory B.
[2] C. Kuratowski. Sur le problème des courbes gauches en Topologie , 1930 .
[3] David S. Johnson,et al. Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .
[4] Sang-il Oum,et al. Rank-Width and Well-Quasi-Ordering , 2008, SIAM J. Discret. Math..
[5] Michael R. Fellows,et al. On search decision and the efficiency of polynomial-time algorithms , 1989, STOC '89.
[6] Paul D. Seymour,et al. Graph minors. IV. Tree-width and well-quasi-ordering , 1990, J. Comb. Theory, Ser. B.
[7] A.D. Lopez,et al. A Dense Gate Matrix Layout Method for MOS VLSI , 1980, IEEE Journal of Solid-State Circuits.
[8] Michael A. Langston,et al. obstruction Set Isolation for the Gate Matrix Layout Problem , 1994, Discret. Appl. Math..
[9] Nancy G. Kinnersley,et al. The Vertex Separation Number of a Graph equals its Path-Width , 1992, Inf. Process. Lett..
[10] Neil Robertson,et al. Disjoint Paths—A Survey , 1985 .
[11] Michael R. Fellows,et al. Nonconstructive Advances in Polynomial-Time Complexity , 1987, Inf. Process. Lett..
[12] Michael R. Fellows,et al. Nonconstructive tools for proving polynomial-time decidability , 1988, JACM.
[13] RobertsonNeil,et al. Graph minors. XIII , 1994 .
[14] Paul D. Seymour,et al. Graph Minors. XX. Wagner's conjecture , 2004, J. Comb. Theory B.
[15] Michael A. Langston,et al. Exact and Approximate Solutions for the Gate Matrix Layout Problem , 1987, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.
[16] Michael R. Fellows,et al. Parameterized Complexity , 1998 .
[17] Michael R. Fellows,et al. On Well-Partial-Order Theory and its Application to Combinatorial Problems of VLSI Design , 1989, SIAM J. Discret. Math..