Hyperchaotic Coupled Chua Circuits: an Approach for Generating New n×m-scroll attractors

In this paper an approach for generating new hyperchaotic attractors from coupled Chua circuits is proposed. The technique, which exploits sine functions as nonlinearities, enables n×m-scroll attractors to be generated. In particular, it is shown that n×m-scroll dynamics can be easily designed by modifying four parameters related to the circuit nonlinearities. Simulation results are reported to illustrate the capability of the proposed approach.

[1]  Giuseppe Grassi,et al.  Experimental realization of observer-based hyperchaos synchronization , 2001 .

[2]  Michael Peter Kennedy,et al.  Three steps to chaos. II. A Chua's circuit primer , 1993 .

[3]  M. Brucoli,et al.  SYNCHRONIZATION OF HYPERCHAOTIC CIRCUITS VIA CONTINUOUS FEEDBACK CONTROL WITH APPLICATION TO SECURE COMMUNICATIONS , 1998 .

[4]  Leonarda Carnimeo,et al.  DESIGN OF A HYPERCHAOTIC CRYPTOSYSTEM BASED ON IDENTICAL AND GENERALIZED SYNCHRONIZATION , 1999 .

[5]  Tomasz Kapitaniak,et al.  Birth of double-double scroll attractor in coupled Chua circuits , 1994 .

[6]  Johan A. K. Suykens,et al.  Families of scroll Grid attractors , 2002, Int. J. Bifurc. Chaos.

[7]  G. Grassi,et al.  Synchronizing hyperchaotic systems by observer design , 1999 .

[8]  J. Thompson,et al.  Nonlinear Dynamics and Chaos: Geometrical Methods for Engineers and Scientists , 1986 .

[9]  J. Suykens,et al.  Generation of n-double scrolls (n=1, 2, 3, 4,...) , 1993 .

[10]  Leon O. Chua,et al.  A family of n-scroll attractors from a generalized Chua's circuit , 1997 .

[11]  Saverio Mascolo,et al.  Synchronizing Hyperchaotic Systems by Observer Design , 1999 .

[12]  Guanrong Chen,et al.  Chaotification via arbitrarily Small Feedback Controls: Theory, Method, and Applications , 2000, Int. J. Bifurc. Chaos.

[13]  Guanrong Chen,et al.  Generation of n-scroll attractors via sine function , 2001 .

[14]  Michael Peter Kennedy,et al.  Three Steps to Chaos-Part 11: A Chua's Circuit Primer , 1993 .

[15]  Rabinder N Madan,et al.  Chua's Circuit: A Paradigm for Chaos , 1993, Chua's Circuit.

[16]  J. Suykens,et al.  Experimental confirmation of 3- and 5-scroll attractors from a generalized Chua's circuit , 2000 .

[17]  Luigi Fortuna,et al.  Generation of n-double scrolls via cellular neural networks , 1996, Int. J. Circuit Theory Appl..

[18]  S. Mascolo,et al.  Nonlinear observer design to synchronize hyperchaotic systems via a scalar signal , 1997 .