Multiphysics modelling of structural battery composites

[1]  Tianwei Jin,et al.  Structural batteries: Advances, challenges and perspectives , 2022, Materials Today.

[2]  M. Srinivasan,et al.  Design of Structural Batteries: Carbon Fibers and Alternative Form Factors , 2022, Materials Today Sustainability.

[3]  G. Lindbergh,et al.  Multifunctional Carbon Fiber Composites: A Structural, Energy Harvesting, Strain-Sensing Material , 2022, ACS applied materials & interfaces.

[4]  G. Offer,et al.  Measuring Irreversible Heat Generation in Lithium-Ion Batteries: An Experimental Methodology , 2022, Journal of The Electrochemical Society.

[5]  F. Larsson,et al.  On the coupled thermo-electro-chemo-mechanical performance of structural batteries with emphasis on thermal effects , 2022, European Journal of Mechanics - A/Solids.

[6]  Thomas M. M. Heenan,et al.  Cracking predictions of lithium-ion battery electrodes by X-ray computed tomography and modelling , 2022, Journal of Power Sources.

[7]  F. Larsson,et al.  Experimental and computational characterization of carbon fibre based structural battery electrode laminae , 2022, Composites Science and Technology.

[8]  F. Romano,et al.  Structural Batteries for Aeronautic Applications—State of the Art, Research Gaps and Technology Development Needs , 2021, Aerospace.

[9]  F. Larsson,et al.  Computational modelling of structural batteries accounting for stress-assisted convection in the electrolyte , 2021, International Journal of Solids and Structures.

[10]  A. Simone,et al.  An efficient computational approach for three‐dimensional modeling and simulation of fibrous battery electrodes , 2021, International journal for numerical methods in engineering.

[11]  P. Gudmundson,et al.  A multi-scale model for simulation of electrochemically induced stresses on scales of active particles, electrode layers, and battery level in lithium-ion batteries , 2021, Journal of Power Sources.

[12]  M. Colliander,et al.  Effect of lithiation on the elastic moduli of carbon fibres , 2021, Carbon.

[13]  P. Sharma,et al.  Theory of soft solid electrolytes: Overall properties of composite electrolytes, effect of deformation and microstructural design for enhanced ionic conductivity , 2021, Journal of the Mechanics and Physics of Solids.

[14]  H. Monner,et al.  Microscale Thermal Modelling of Multifunctional Composite Materials Made from Polymer Electrolyte Coated Carbon Fibres Including Homogenization and Model Reduction Strategies , 2021, Applied Mechanics.

[15]  S. Rezaei,et al.  A consistent framework for chemo-mechanical cohesive fracture and its application in solid-state batteries , 2021, Journal of the Mechanics and Physics of Solids.

[16]  Sean D. Lubner,et al.  A review of thermal physics and management inside lithium-ion batteries for high energy density and fast charging , 2021 .

[17]  A. Mouritz,et al.  Energy Storage Structural Composites with Integrated Lithium‐Ion Batteries: A Review , 2021, Advanced Materials Technologies.

[18]  P. Camanho,et al.  Structural Batteries: A Review , 2021, Molecules.

[19]  M. Kaminski,et al.  Homogenization of heat transfer in fibrous composite with stochastic interface defects , 2021 .

[20]  James Marcicki,et al.  Opportunities and Challenges of Lithium Ion Batteries in Automotive Applications , 2021 .

[21]  G. Lindbergh,et al.  A Structural Battery and its Multifunctional Performance , 2021, Advanced Energy and Sustainability Research.

[22]  S. Yin,et al.  Composite structural batteries with Co3O4/CNT modified carbon fibers as anode: Computational insights on the interfacial behavior , 2021 .

[23]  D. Howey,et al.  Free Radicals: Making a Case for Battery Modeling , 2020, Electrochemical Society Interface.

[24]  F. Larsson,et al.  Electro-chemo-mechanically coupled computational modelling of structural batteries , 2020, Multifunctional Materials.

[25]  Jun Xu,et al.  Effective thermo-electro-mechanical modeling framework of lithium-ion batteries based on a representative volume element approach , 2020 .

[26]  S. Shi,et al.  Application of phase-field method in rechargeable batteries , 2020, npj Computational Materials.

[27]  Yunqi Li,et al.  Fabrication and multiphysics modeling of modified carbon fiber as structural anodes for lithium-ion batteries , 2020 .

[28]  S. Mekid,et al.  Electromechanical Assessment and Induced Temperature Measurement of Carbon Fiber Tows under Tensile Condition , 2020, Materials.

[29]  Jodie L. Lutkenhaus,et al.  Structural batteries take a load off , 2020, Science Robotics.

[30]  V. Viswanathan,et al.  Kinetics of lithium electrodeposition and stripping. , 2020, The Journal of chemical physics.

[31]  Pralav P. Shetty,et al.  Linking void and interphase evolution to electrochemistry in solid-state batteries using operando X-ray tomography , 2020, Nature Materials.

[32]  Gang Zhang,et al.  Size-dependent phononic thermal transport in low-dimensional nanomaterials , 2020 .

[33]  F. Larsson,et al.  Performance of bicontinuous structural electrolytes , 2020, Multifunctional Materials.

[34]  Weiling Luan,et al.  The diffusion induced stress and cracking behaviour of primary particle for Li-ion battery electrode , 2020 .

[35]  Pengfei Liu,et al.  Computational Modeling of Heterogeneity of Stress, Charge, and Cyclic Damage in Composite Electrodes of Li-Ion Batteries , 2020 .

[36]  G. Lindbergh,et al.  Characterization of the adhesive properties between structural battery electrolytes and carbon fibers , 2020 .

[37]  Runsen Zhang,et al.  The role of transport electrification in global climate change mitigation scenarios , 2020, Environmental Research Letters.

[38]  Huajian Gao,et al.  Tuning crack-inclusion interaction with an applied T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{T}$$\end{d , 2020, International Journal of Fracture.

[39]  Johanna Xu,et al.  Matrix and interface cracking in cross-ply composite structural battery under combined electrochemical and mechanical loading , 2020 .

[40]  T. Luo,et al.  Thermal Conductivity of Polyelectrolytes with Different Counterions , 2020, Journal of Physical Chemistry C.

[41]  G. Lindbergh,et al.  Structural battery composites: a review , 2019, Functional Composites and Structures.

[42]  D. Carlstedt,et al.  Thermal and diffusion induced stresses in a structural battery under galvanostatic cycling , 2019, Composites Science and Technology.

[43]  F. Marone,et al.  Operando Visualization of Morphological Dynamics in All‐Solid‐State Batteries , 2019, Advanced Energy Materials.

[44]  Francisco Javier Quintero Cortes,et al.  Visualizing Chemomechanical Degradation of a Solid-State Battery Electrolyte , 2019, ACS Energy Letters.

[45]  H. Seifert,et al.  Development and application of phase diagrams for Li-ion batteries using CALPHAD approach , 2019, Progress in Natural Science: Materials International.

[46]  D. Zenkert,et al.  Bicontinuous Electrolytes via Thermally Initiated Polymerization for Structural Lithium Ion Batteries , 2019, ACS Applied Energy Materials.

[47]  R. Li,et al.  Polyethylene oxide/garnet-type Li6.4La3Zr1.4Nb0.6O12 composite electrolytes with improved electrochemical performance for solid state lithium rechargeable batteries , 2019, Composites Science and Technology.

[48]  Hung-Ju Yen,et al.  Strategic Structural Design of a Gel Polymer Electrolyte toward a High Efficiency Lithium-Ion Battery , 2019, ACS Applied Energy Materials.

[49]  Zhansheng Guo,et al.  Simulation of crack behavior of secondary particles in Li-ion battery electrodes during lithiation/de-lithiation cycles , 2019, International Journal of Mechanical Sciences.

[50]  Abbas S. Milani,et al.  Piezoresistive sensing in chopped carbon fiber embedded PDMS yarns , 2019, Composites Part B: Engineering.

[51]  Johanna Xu,et al.  Matrix and interface microcracking in carbon fiber/polymer structural micro-battery , 2019, Journal of Composite Materials.

[52]  D. Chung,et al.  Piezoelectric and piezoresistive behavior of unmodified carbon fiber , 2019, Carbon.

[53]  R. McMeeking,et al.  A finite strain electro-chemo-mechanical theory for ion transport with application to binary solid electrolytes , 2019, Journal of the Mechanics and Physics of Solids.

[54]  R. McMeeking,et al.  An Extended Formulation of Butler-Volmer Electrochemical Reaction Kinetics Including the Influence of Mechanics , 2019, Journal of The Electrochemical Society.

[55]  Bai-Xiang Xu,et al.  A review on modeling of electro-chemo-mechanics in lithium-ion batteries , 2019, Journal of Power Sources.

[56]  D. Brandell,et al.  Electrochemical-mechanical modeling of solid polymer electrolytes: Impact of mechanical stresses on Li-ion battery performance , 2019, Electrochimica Acta.

[57]  V. Wood,et al.  Surface phonons of lithium ion battery active materials , 2019, Sustainable Energy & Fuels.

[58]  D. Carlstedt,et al.  Effects of state of charge on elastic properties of 3D structural battery composites , 2019, Composites Science and Technology.

[59]  K. Zhao,et al.  Corrosive fracture of electrodes in Li-ion batteries , 2018, Journal of the Mechanics and Physics of Solids.

[60]  Wilhelm Johannisson,et al.  Multifunctional performance of a carbon fiber UD lamina electrode for structural batteries , 2018, Composites Science and Technology.

[61]  F. Chang,et al.  Multifunctional energy storage composite structures with embedded lithium-ion batteries , 2018, Journal of Power Sources.

[62]  Y. Chiang,et al.  Mechanical instability of electrode-electrolyte interfaces in solid-state batteries , 2018, Physical Review Materials.

[63]  Lin Xu,et al.  Interfaces in Solid-State Lithium Batteries , 2018, Joule.

[64]  Zhigang Xue,et al.  Superior thermal conductivity of poly (ethylene oxide) for solid-state electrolytes: A molecular dynamics study , 2018, International Journal of Heat and Mass Transfer.

[65]  Yujie Wei,et al.  Stress evolution in elastic-plastic electrodes during electrochemical processes: A numerical method and its applications , 2018, Journal of the Mechanics and Physics of Solids.

[66]  G. Lindbergh,et al.  Lithium iron phosphate coated carbon fiber electrodes for structural lithium ion batteries , 2018, Composites Science and Technology.

[67]  Alberto Salvadori,et al.  A coupled model of transport-reaction-mechanics with trapping. Part I – Small strain analysis , 2018 .

[68]  J. Janek,et al.  Volume Changes of Graphite Anodes Revisited: A Combined Operando X-ray Diffraction and In Situ Pressure Analysis Study , 2018 .

[69]  Jun Lu,et al.  Batteries and fuel cells for emerging electric vehicle markets , 2018 .

[70]  G. Lindbergh,et al.  Multiphysics modeling of mechanical and electrochemical phenomena in structural composites for energy storage: Single carbon fiber micro-battery , 2018 .

[71]  G. Lindbergh,et al.  Carbon fiber composites with battery function: Stresses and dimensional changes due to Li-ion diffusion , 2018 .

[72]  Marco Paggi,et al.  A 3D finite strain model for intralayer and interlayer crack simulation coupling the phase field approach and cohesive zone model , 2017 .

[73]  D. Zenkert,et al.  Structural lithium ion battery electrolytes via reaction induced phase-separation , 2017 .

[74]  D. Zenkert,et al.  A model to analyse deformations and stresses in structural batteries due to electrode expansions , 2017 .

[75]  Marshall C. Smart,et al.  Factors Limiting Li + Charge Transfer Kinetics in Li-Ion Batteries , 2017 .

[76]  T. Leichtweiss,et al.  Capacity Fade in Solid-State Batteries: Interphase Formation and Chemomechanical Processes in Nickel-Rich Layered Oxide Cathodes and Lithium Thiophosphate Solid Electrolytes , 2017 .

[77]  M. Johansson,et al.  Improved performance of solid polymer electrolytes for structural batteries utilizing plasticizing co-solvents , 2017 .

[78]  Huajian Gao,et al.  Lithiation-enhanced charge transfer and sliding strength at the silicon-graphene interface: A first-principles study , 2017 .

[79]  W. Craig Carter,et al.  Modeling of internal mechanical failure of all-solid-state batteries during electrochemical cycling, and implications for battery design , 2017, 1703.00113.

[80]  M. Bazant,et al.  Multiphase Porous Electrode Theory , 2017, 1702.08432.

[81]  W. Craig Carter,et al.  The Effect of Stress on Battery-Electrode Capacity , 2017 .

[82]  Alberto Salvadori,et al.  Computational modeling of Li-ion batteries , 2016 .

[83]  Marcel Lacroix,et al.  Review of simplified Pseudo-two-Dimensional models of lithium-ion batteries , 2016 .

[84]  Kejie Zhao,et al.  Electrochemomechanics of Electrodes in Li-Ion Batteries: A Review , 2016 .

[85]  Marc Kamlah,et al.  Modeling crack growth during Li insertion in storage particles using a fracture phase field approach , 2016 .

[86]  Ying Zhao,et al.  Phase field modeling of electrochemically induced fracture in Li‐ion battery with large deformation and phase segregation , 2016 .

[87]  Christian Miehe,et al.  A phase‐field model for chemo‐mechanical induced fracture in lithium‐ion battery electrode particles , 2016 .

[88]  Y. Chiang,et al.  Formulation of the coupled electrochemical–mechanical boundary-value problem, with applications to transport of multiple charged species , 2016 .

[89]  Ying Zhao,et al.  Phase-field study of electrochemical reactions at exterior and interior interfaces in Li-ion battery electrode particles , 2015, 1511.06240.

[90]  Daniel P. Abraham,et al.  Stress Evolution in Lithium-ion Composite Electrodes during Electrochemical Cycling and Resulting Internal Pressures on the Cell Casing , 2015, 1511.02445.

[91]  B. Sheldon,et al.  A continuum model of deformation, transport and irreversible changes in atomic structure in amorphous lithium–silicon electrodes , 2015 .

[92]  Huajian Gao,et al.  Employing nanoscale surface morphologies to improve interfacial adhesion between solid electrolytes and Li ion battery cathodes , 2015 .

[93]  Hongjiu Hu,et al.  Analysis of lithium ion concentration and stress in the solid electrolyte interphase on the graphite anode. , 2015, Physical chemistry chemical physics : PCCP.

[94]  A. Bower,et al.  Analytical solutions for composition and stress in spherical elastic–plastic lithium-ion electrode particles containing a propagating phase boundary , 2015 .

[95]  M Mistry,et al.  Mechanical, electrical and microstructural characterisation of multifunctional structural power composites , 2015 .

[96]  Juchuan Li,et al.  Effects of stress on lithium transport in amorphous silicon electrodes for lithium-ion batteries , 2015 .

[97]  Senentxu Lanceros-Méndez,et al.  Lithium ion rechargeable batteries: State of the art and future needs of microscopic theoretical models and simulations , 2015 .

[98]  Ya-Pu Zhao,et al.  A phase field model coupling lithium diffusion and stress evolution with crack propagation and application in lithium ion batteries. , 2015, Physical chemistry chemical physics : PCCP.

[99]  Xu Guo,et al.  A chemo-mechanical model of lithiation in silicon , 2014 .

[100]  A. Pupurs,et al.  Modeling mechanical stress and exfoliation damage in carbon fiber electrodes subjected to cyclic intercalation/deintercalation of lithium ions , 2014 .

[101]  L. Asp,et al.  Structural power composites , 2014 .

[102]  G. Lindbergh,et al.  Cellulose nanofibril reinforced composite electrolyte for lithium ion battery applications , 2014 .

[103]  Alberto Salvadori,et al.  A computational homogenization approach for Li-ion battery cells : Part 1 – formulation , 2014 .

[104]  G. Lindbergh,et al.  The effect of lithium-intercalation on the mechanical properties of carbon fibres , 2014 .

[105]  Leif Asp,et al.  Solid polymer electrolyte-coated carbon fibres for structural and novel micro batteries , 2013 .

[106]  A. Bower,et al.  Measurement and modeling of the mechanical and electrochemical response of amorphous Si thin film electrodes during cyclic lithiation , 2013, 1311.5844.

[107]  Zhigang Suo,et al.  Measurements of the fracture energy of lithiated silicon electrodes of Li-ion batteries. , 2013, Nano letters.

[108]  G. Lindbergh,et al.  Piezo-electrochemical effect in lithium-intercalated carbon fibres , 2013 .

[109]  Huajian Gao,et al.  Li segregation induces structure and strength changes at the amorphous Si/Cu interface. , 2013, Nano letters.

[110]  Dan Zenkert,et al.  Expansion of carbon fibres induced by lithium intercalation for structural electrode applications , 2013 .

[111]  Feng Gao,et al.  Interface-reaction controlled diffusion in binary solids with applications to lithiation of silicon in lithium-ion batteries , 2013 .

[112]  L. Anand A Cahn–Hilliard-type theory for species diffusion coupled with large elastic–plastic deformations , 2012 .

[113]  F. Gao,et al.  A finite deformation stress-dependent chemical potential and its applications to lithium ion batteries , 2012 .

[114]  Allan F. Bower,et al.  A simple finite element model of diffusion, finite deformation, plasticity and fracture in lithium ion insertion electrode materials , 2012 .

[115]  Dan Zenkert,et al.  Impact of electrochemical cycling on the tensile properties of carbon fibres for structural lithium-ion composite batteries , 2012 .

[116]  I. Steinbach,et al.  Phase-field model with finite interface dissipation: Extension to multi-component multi-phase alloys , 2012 .

[117]  Eftychios Sifakis,et al.  An XFEM method for modeling geometrically elaborate crack propagation in brittle materials , 2011 .

[118]  V. Shenoy,et al.  Location- and Orientation-Dependent Progressive Crack Propagation in Cylindrical Graphite Electrode Particles , 2011 .

[119]  Zhigang Suo,et al.  Large Plastic Deformation in High-Capacity Lithium-Ion Batteries Caused by Charge and Discharge , 2011 .

[120]  Toshiyuki Koyama,et al.  Thermodynamic modeling of the LiCoO 2CoO 2 pseudo-binary system , 2011 .

[121]  A. Bower,et al.  A finite strain model of stress, diffusion, plastic flow, and electrochemical reactions in a lithium-ion half-cell , 2011, 1107.6020.

[122]  T. Fuller,et al.  A Critical Review of Thermal Issues in Lithium-Ion Batteries , 2011 .

[123]  Huajian Gao,et al.  Improved cycling stability of silicon thin film electrodes through patterning for high energy density lithium batteries , 2011 .

[124]  Zhigang Suo,et al.  Fracture of electrodes in lithium-ion batteries caused by fast charging , 2010 .

[125]  V. Srinivasan,et al.  In situ measurements of stress evolution in silicon thin films during electrochemical lithiation and delithiation , 2010, 1108.0647.

[126]  Yue Qi,et al.  Elastic softening of amorphous and crystalline Li–Si Phases with increasing Li concentration: A first-principles study , 2010 .

[127]  M. Verbrugge,et al.  Diffusion-Induced Stress, Interfacial Charge Transfer, and Criteria for Avoiding Crack Initiation of Electrode Particles , 2010 .

[128]  Zhigang Suo,et al.  Large deformation and electrochemistry of polyelectrolyte gels , 2010 .

[129]  Anton Van der Ven,et al.  Lithium Diffusion in Graphitic Carbon , 2010, 1108.0576.

[130]  Mark W. Verbrugge,et al.  Evolution of stress within a spherical insertion electrode particle under potentiostatic and galvanostatic operation , 2009 .

[131]  T. Pereira,et al.  Energy Storage Structural Composites: a Review , 2009 .

[132]  Ted Belytschko,et al.  The extended finite element method for fracture in composite materials , 2009 .

[133]  D. Tang,et al.  Simultaneous measurements of the thermal conductivity, thermal capacity and thermal diffusivity of an individual carbon fibre , 2007 .

[134]  W. Shyy,et al.  Numerical Simulation of Intercalation-Induced Stress in Li-Ion Battery Electrode Particles , 2007 .

[135]  John Newman,et al.  Stress generation and fracture in lithium insertion materials , 2005 .

[136]  G. Botte Modeling volume changes due to lithium intercalation in a carbon fiber , 2005 .

[137]  P. Kumta,et al.  High Capacity, Reversible Silicon Thin-Film Anodes for Lithium-Ion Batteries , 2003 .

[138]  K. S. Nanjundaswamy,et al.  Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries , 1997 .

[139]  A. Needleman A Continuum Model for Void Nucleation by Inclusion Debonding , 1987 .

[140]  J. Li,et al.  Physical chemistry of some microstructural phenomena , 1978 .

[141]  J. Cahn,et al.  A linear theory of thermochemical equilibrium of solids under stress , 1973 .

[142]  G. Lindbergh,et al.  A screen-printing method for manufacturing of current collectors for structural batteries , 2021 .

[143]  Ryan L. Karkkainen,et al.  Carbon fiber reinforced structural lithium-ion battery composite: Multifunctional power integration for CubeSats , 2020 .

[144]  M. Verbrugge,et al.  Thermodynamics, stress, and Stefan-Maxwell diffusion in solids: application to small-strain materials used in commercial lithium-ion batteries , 2015, Journal of Solid State Electrochemistry.

[145]  Venkat R. Subramanian,et al.  Efficient Simulation and Model Reformulation of Two-Dimensional Electrochemical Thermal Behavior of Lithium-Ion Batteries , 2015 .

[146]  K. Kim,et al.  Lithium Concentration Dependent Elastic Properties of Battery Electrode Materials from First Principles Calculations , 2014 .

[147]  M. Behm,et al.  Electrochemical Characterization of Lithium Intercalation Processes of PAN-Based Carbon Fibers in a Microelectrode System , 2013 .

[148]  Huajian Gao,et al.  Continuum and atomistic models of strongly coupled diffusion, stress, and solute concentration , 2011 .

[149]  Dan Zenkert,et al.  PAN-Based Carbon Fiber Negative Electrodes for Structural Lithium-Ion Batteries , 2011 .

[150]  W. Craig Carter,et al.  Microstructural Modeling and Design of Rechargeable Lithium-Ion Batteries , 2005 .