Analysis of SDFEM on Shishkin Triangular Meshes and Hybrid Meshes for Problems with Characteristic Layers

In this paper, we analyze the streamline diffusion finite element method (SDFEM) for a model singularly perturbed convection–diffusion equation on a Shishkin triangular mesh and hybrid meshes. Supercloseness property of $$u^I-u^N$$uI-uN is obtained, where $$u^I$$uI is the interpolant of the solution u and $$u^N$$uN is the SDFEM’s solution. The analysis depends on novel integral inequalities for the diffusion and convection parts in the bilinear form. Furthermore, analysis on hybrid meshes shows that bilinear elements should be recommended for the exponential layer, not for the characteristic layer. Finally, numerical experiments support these theoretical results.

[1]  Xiaowei Liu,et al.  Supercloseness of the SDFEM on Shishkin triangular meshes for problems with exponential layers , 2016, Advances in Computational Mathematics.

[2]  Gene H. Golub,et al.  Numerical solution of saddle point problems , 2005, Acta Numerica.

[3]  Martin Stynes,et al.  Steady-state convection-diffusion problems , 2005, Acta Numerica.

[4]  U MartinStynes A Uniformly Convergent Galerkin Method on a Shishkin Mesh for a Convection-Diffusion Problem , 1997 .

[5]  Torsten Linß,et al.  Superconvergence analysis of the SDFEM for elliptic problems with characteristic layers , 2008 .

[6]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[7]  S. Franz,et al.  Superconvergence analysis of the Galerkin FEM for a singularly perturbed convection–diffusion problem with characteristic layers , 2008 .

[8]  Hans-Görg Roos Superconvergence on a hybrid mesh for singularly perturbed problems with exponential layers , 2006 .

[9]  Martin Stynes,et al.  A Uniformly Convergent Galerkin Method on a Shishkin Mesh for a Convection-Diffusion Problem☆ , 1997 .

[10]  T. Hughes,et al.  MULTI-DIMENSIONAL UPWIND SCHEME WITH NO CROSSWIND DIFFUSION. , 1979 .

[11]  Lutz Tobiska,et al.  Using rectangular Qp elements in the SDFEM for a convection--diffusion problem with a boundary layer , 2008 .

[12]  R. Bruce Kellogg,et al.  Corner singularities and boundary layers in a simple convection–diffusion problem☆ , 2005 .

[13]  M. Stynes,et al.  Robust Numerical Methods for Singularly Perturbed Differential Equations: Convection-Diffusion-Reaction and Flow Problems , 1996 .

[14]  R. Bruce Kellogg,et al.  Galerkin and streamline diffusion finite element methods on a Shishkin mesh for a convection-diffusion problem with corner singularities , 2011, Math. Comput..

[15]  Martin Stynes,et al.  Pointwise Error Estimates for a Streamline Diffusion Scheme on a Shishkin Mesh for a Convection-Diff , 1995 .

[16]  R. Bruce Kellogg,et al.  Sharpened bounds for corner singularities and boundary layers in a simple convection-diffusion problem , 2007, Appl. Math. Lett..

[17]  G. I. SHISHKIN,et al.  Grid approximation of singularly perturbed elliptic equations in case of limit zero-order equations degenerating at the boundary , 1990 .

[18]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[19]  Lutz Tobiska,et al.  The SDFEM for a Convection-Diffusion Problem with a Boundary Layer: Optimal Error Analysis and Enhancement of Accuracy , 2003, SIAM J. Numer. Anal..