Asteroids: Anchoring and Sample Acquisition Approaches in Support of Science, Exploration, and In situ Resource Utilization

The goal of this chapter is to describe technologies related to asteroid sampling and mining. In particular, the chapter discusses various methods of anchoring to a small body (a prerequisite for sampling and mining missions) as well as sample acquisition technologies and large scale mining options. These technologies are critical to enabling exploration, and utilization of asteroids by NASA and private companies.

[1]  R. Mugnuolo,et al.  Current status and scientific capabilities of the Rosetta lander payload , 2002 .

[2]  Akira Fujiwara,et al.  Hayabusa—Its technology and science accomplishment summary and Hayabusa-2 , 2006 .

[3]  Josep M. Guerrero,et al.  Drilling systems for extraterrestrial subsurface exploration. , 2008, Astrobiology.

[4]  J. Kawaguchi,et al.  The Rubble-Pile Asteroid Itokawa as Observed by Hayabusa , 2006, Science.

[5]  James E. Polk,et al.  Asteroid Return Mission Feasibility Study , 2011 .

[6]  A. Sadilek,et al.  Sampling a planetary surface with a pyrotechnic rock chipper , 2004, 2004 IEEE Aerospace Conference Proceedings (IEEE Cat. No.04TH8720).

[7]  Kazuya Yoshida,et al.  Touchdown of the Hayabusa Spacecraft at the Muses Sea on Itokawa , 2006, Science.

[8]  Stephan Ulamec,et al.  Rosetta lander - Philae: Implications of an alternative mission , 2006 .

[9]  Li,et al.  NEAR at eros: imaging and spectral results , 2000, Science.

[10]  J. Pel,et al.  The High Road to Astronomical Photometric Precision: Differential Photometry , 2011 .

[11]  N. Izenberg,et al.  The landing of the NEAR-Shoemaker spacecraft on asteroid 433 Eros , 2001, Nature.

[12]  Stephan Ulamec,et al.  Landing Strategies for Small Bodies Missions - Philae and beyond , 2009 .

[13]  R. Lorenz,et al.  Planetary Landers and Entry Probes: Index , 2007 .

[14]  B. Chares,et al.  First contact with a comet surface: Rosetta lander simulations , 2004 .

[15]  Thomas A. Sullivan,et al.  Pneumatic conveying of materials at partial gravity , 1994 .

[16]  Stephan Ulamec,et al.  Capabilities of Philae, the Rosetta Lander , 2008 .

[17]  R. Bonitz The brush wheel sampler — A sampling device for small-body touch-and-go missions , 2012, 2012 IEEE Aerospace Conference.

[18]  Christopher P. McKay,et al.  LunarVader: Development and Testing of Lunar Drill in Vacuum Chamber and in Lunar Analog Site of Antarctica , 2013 .

[19]  Giovanni B. Valsecchi,et al.  Long term impact risk for (101955) 1999 RQ36 , 2009, 0901.3631.

[20]  Michael J. Gaffey,et al.  Mineralogy of Asteroids , 2011 .

[21]  Greg S. Mungas,et al.  Novel Approaches to Drilling and Excavation on the Moon , 2009 .

[22]  Brian Carcich,et al.  A ballistics analysis of the Deep Impact ejecta plume: Determining Comet Tempel 1's gravity, mass, and density , 2007 .

[23]  F. Culick,et al.  Asteroid retrieval feasibility , 2012, 2012 IEEE Aerospace Conference.

[24]  Kris Zacny,et al.  Drilling in extreme environments : penetration and sampling on Earth and other planets , 2009 .

[25]  L. Richter,et al.  The putative mechanical Strength of comet surface material applied to landing on a comet , 2009 .

[26]  Paul C. H. Lee,et al.  Amor: A Lander Mission to Explore the C-Type Triple Near-Earth Asteroid system 2001 SN263 , 2011 .

[27]  Aaron Parness,et al.  Gravity-independent mobility and drilling on natural rock using microspines , 2012, 2012 IEEE International Conference on Robotics and Automation.

[28]  L. Colangeli,et al.  The New Rosetta Targets , 2004 .

[29]  R. Mugnuolo,et al.  Comet sample acquisition for ROSETTA lander mission , 2001 .

[30]  Fred E. C. Culick,et al.  Asteroid Retrieval Feasibility Study , 2012 .

[31]  John S. Lewis,et al.  Mining the sky : untold riches from the asteroids, comets, and planets , 1996 .

[32]  Kris Zacny,et al.  Mobile In-Situ Water Extractor (MISWE) for Mars, Moon, and Asteroids In Situ Resource Utilization , 2012 .

[33]  Aaron Parness,et al.  Demonstrations of gravity-independent mobility and drilling on natural rock using microspines , 2012, 2012 IEEE International Conference on Robotics and Automation.

[34]  K. Glassmeier,et al.  The Rosetta Mission: Flying Towards the Origin of the Solar System , 2007 .

[35]  Greg S. Mungas,et al.  Pneumatic Excavator and Regolith Transport System for Lunar ISRU and Construction , 2008 .

[36]  Akira Fujiwara,et al.  Asteroidal surface sampling by the MUSES-C spacecraft , 2002 .

[37]  J. Licandro,et al.  Spitzer observations of spacecraft target 162173 (1999 JU3) , 2009, 0908.0796.

[38]  K. Lodders Solar System Abundances of the Elements , 2010, 1010.2746.

[39]  B. E. Reddy,et al.  Principles and Perspectives in Cosmochemistry , 2010 .

[40]  Kris Zacny,et al.  Investigating the Effects of Percussion on Excavation Forces , 2013 .

[41]  Thuy Mai,et al.  Technology Readiness Level , 2015 .

[42]  Mark Joseph Sonter,et al.  The technical and economic feasibility of mining the near-earth asteroids , 1997 .

[43]  K. Zacny,et al.  Percussive digging systems for robotic exploration and excavation of planetary and lunar regolith , 2009, 2009 IEEE Aerospace conference.

[44]  A. Ercoli Finzi,et al.  SD2 – How To Sample A Comet , 2007 .

[45]  D. Britt,et al.  Asteroid Density, Porosity, and Structure , 2002 .

[46]  Mark R. Cutkosky,et al.  Scaling Hard Vertical Surfaces with Compliant Microspine Arrays , 2006, Int. J. Robotics Res..

[47]  Daniel E. Koditschek,et al.  Biologically inspired climbing with a hexapedal robot , 2008 .

[48]  Kris Zacny,et al.  Investigating the Efficiency of Pneumatic Transfer of JSC-1a Lunar Regolith Simulant in Vacuum and Lunar Gravity During Parabolic Flights , 2010 .

[49]  A. Parness,et al.  Microgravity coring: A self-contained anchor and drill for consolidated rock , 2012, 2012 IEEE Aerospace Conference.