The periodic unfolding method for a class of imperfect transmission problems

The periodic unfolding method was introduced by D. Cioranescu, A. Damlamian and G. Griso for studying the classical periodic homogenization in fixed domains and more recently extended to periodically perforated domains by D. Cioranescu, A. Damlamian, P. Donato, G. Griso, and R. Zaki. Here, the method is adapted to two-component domains which are separated by a periodic interface. The unfolding method is then applied to an elliptic problem with a jump of the solution on the interface, which is proportional to the flux and depends on a real parameter. We prove some homogenization and corrector results, which recover and complete those previously obtained by the first author and S. Monsurr`o. Bibliography: 32 titles. Illustrations: 2 figures.

[1]  J. C. Jaeger,et al.  Conduction of Heat in Solids , 1952 .

[2]  Doina Cioranescu,et al.  The Periodic Unfolding Method in Homogenization , 2008, SIAM J. Math. Anal..

[3]  Doina Cioranescu,et al.  The Periodic Unfolding Method in Domains with Holes , 2012, SIAM J. Math. Anal..

[4]  P. Donato,et al.  An introduction to homogenization , 2000 .

[5]  Doina Cioranescu,et al.  Periodic unfolding and homogenization , 2002 .

[6]  H. I. Ene,et al.  Model of diffusion in partially fissured media , 2002 .

[7]  Sara Monsurrò,et al.  Homogenization of a two-component composite with interfacial thermal barrier , 2003 .

[8]  A. Bensoussan,et al.  Asymptotic analysis for periodic structures , 1979 .

[9]  CORRECTOR RESULTS FOR A PARABOLIC PROBLEM WITH A MEMORY EFFECT , 2010 .

[10]  P. Donato,et al.  Homogenization of the wave equation in composites with imperfect interface : A memory effect , 2007 .

[11]  Doina Cioranescu,et al.  Asymptotic behavior of elliptic problems in perforated domains with nonlinear boundary conditions , 2007, Asymptot. Anal..

[12]  Sara Monsurrò,et al.  Correctors for the Homogenization of a Class of Hyperbolic Equations with Imperfect Interfaces , 2009, SIAM J. Math. Anal..

[13]  Sara Monsurrò,et al.  HOMOGENIZATION OF TWO HEAT CONDUCTORS WITH AN INTERFACIAL CONTACT RESISTANCE , 2004 .

[14]  Homogenization of a Class of Imperfect Transmission Problems , 2011 .

[15]  HOMOGENIZATION OF A PARABOLIC PROBLEM WITH AN IMPERFECT INTERFACE , 2009 .

[16]  Hans-Karl Hummel,et al.  Homogenization for heat transfer in polycrystals with interfacial resistances , 2000 .

[17]  G. Nguetseng A general convergence result for a functional related to the theory of homogenization , 1989 .

[18]  Doina Cioranescu,et al.  The periodic unfolding method in perforated domains. , 2006 .

[19]  Robert Liption Heat conduction in fine scale mixtures with interfacial contact resistance , 1998 .

[20]  Jean-Louis Auriault,et al.  Macroscopic modelling of heat transfer in composites with interfacial thermal barrier , 1994 .

[21]  D. Cioranescu,et al.  Homogenization in open sets with holes , 1979 .

[22]  R. Lipton,et al.  Composites with imperfect interface , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[23]  G. Allaire Homogenization and two-scale convergence , 1992 .

[24]  Doina Cioranescu,et al.  Homogenization of Reticulated Structures , 1999 .

[25]  Homogénéisation d'un problème de diffusion en milieu composite avec barrière à l'interface , 1997 .