Fast Correction Visual Tracking via Feedback Mechanism

Visual tracking is a fundamental problem in computer vision field. Most online visual trackers focus on the appearance information and inference theory to realize tracking frame by frame. However, enough attention has not been paid to the correction ability of a tracking system, which leads to drift problems or tracking failures in previous works. This paper investigates the contribution of feedback mechanism in a tracking-by-detection framework. Results indicate that the changing values of the target state’s posterior distributions provide superior information to the connection between tracking result and the ground truth. We further analyse the spatial appearance information and propose an adaptive feedback tracking method using Discrete-Quaternion-Fourier-Transform (DQFT). Taking advantages of the stability of closed-loop control and the efficiency of DQFT, the proposed tracker can make a distinction between the easy-tracking frames and the hard-tracking frames, and then re-track hard-tracking frames using further temporal information to realize the correction ability. Experiments over 50 challenging videos demonstrate the effectiveness and robustness of the tracker, and the resulting tracker outperforms the existing state-of-the-art methods.

[1]  Laura Sevilla-Lara,et al.  Distribution fields for tracking , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[2]  Huchuan Lu,et al.  Visual tracking via adaptive structural local sparse appearance model , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[3]  Bruce A. Draper,et al.  Visual object tracking using adaptive correlation filters , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[4]  Vassil S. Dimitrov,et al.  On the Multiplication of Reduced Biquaternions and Applications , 1992, Inf. Process. Lett..

[5]  Alexander J. Smola,et al.  Learning with Kernels: support vector machines, regularization, optimization, and beyond , 2001, Adaptive computation and machine learning series.

[6]  Simone Calderara,et al.  Visual Tracking: An Experimental Survey , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  Haibin Ling,et al.  Robust visual tracking using ℓ1 minimization , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[8]  Yi Wu,et al.  Online Object Tracking: A Benchmark , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[9]  Takeo Kanade,et al.  An Iterative Image Registration Technique with an Application to Stereo Vision , 1981, IJCAI.

[10]  Haibin Ling,et al.  Real time robust L1 tracker using accelerated proximal gradient approach , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[11]  Rui Caseiro,et al.  High-Speed Tracking with Kernelized Correlation Filters , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[12]  Uwe D. Hanebeck,et al.  Template matching using fast normalized cross correlation , 2001, SPIE Defense + Commercial Sensing.

[13]  Rui Caseiro,et al.  Exploiting the Circulant Structure of Tracking-by-Detection with Kernels , 2012, ECCV.

[14]  Dorin Comaniciu,et al.  Real-time tracking of non-rigid objects using mean shift , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[15]  Lei Zhang,et al.  Real-Time Compressive Tracking , 2012, ECCV.

[16]  David Zhang,et al.  Fast Visual Tracking via Dense Spatio-temporal Context Learning , 2014, ECCV.

[17]  Jiri Matas,et al.  P-N learning: Bootstrapping binary classifiers by structural constraints , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[18]  Ehud Rivlin,et al.  Robust Fragments-based Tracking using the Integral Histogram , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[19]  Ming-Hsuan Yang,et al.  Incremental Learning for Robust Visual Tracking , 2008, International Journal of Computer Vision.

[20]  Bin Shen,et al.  Online robust image alignment via iterative convex optimization , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[21]  Thomas G. Dietterich,et al.  Solving the Multiple Instance Problem with Axis-Parallel Rectangles , 1997, Artif. Intell..

[22]  Horst Bischof,et al.  Real-Time Tracking via On-line Boosting , 2006, BMVC.

[23]  Ming-Hsuan Yang,et al.  Visual tracking with online Multiple Instance Learning , 2009, CVPR.

[24]  Simon Baker,et al.  Lucas-Kanade 20 Years On: A Unifying Framework , 2004, International Journal of Computer Vision.

[25]  Michael Felsberg,et al.  Adaptive Color Attributes for Real-Time Visual Tracking , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[26]  Narendra Ahuja,et al.  Robust Visual Tracking via Structured Multi-Task Sparse Learning , 2012, International Journal of Computer Vision.

[27]  Philip H. S. Torr,et al.  Struck: Structured output tracking with kernels , 2011, ICCV.

[28]  Narendra Ahuja,et al.  Robust visual tracking via multi-task sparse learning , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[29]  T. Ell,et al.  Quaternion-Fourier transforms for analysis of two-dimensional linear time-invariant partial differential systems , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.