Recent trends in learning of structured and non-standard data

In many application domains data are not given in a classical vector space but occur in form of structural, sequential, relational charac- teristics or other non-standard formats. These data are often represented as graphs or by means of proximity matrices. Often these data sets are also huge and mathematically complicated to treat requesting for new ecient analysis algorithms which are the focus of this tutorial.

[1]  Jing Yang,et al.  A Novel Indefinite Kernel Dimensionality Reduction Algorithm: Weighted Generalized Indefinite Kernel Discriminant Analysis , 2013, Neural Processing Letters.

[2]  Nello Cristianini,et al.  Kernel Methods for Pattern Analysis , 2003, ICTAI.

[3]  Ivor W. Tsang,et al.  Large-Scale Maximum Margin Discriminant Analysis Using Core Vector Machines , 2008, IEEE Transactions on Neural Networks.

[4]  Barbara Hammer,et al.  Adaptive distance measures for sequential data , 2014, ESANN.

[5]  Robert P. W. Duin,et al.  The Dissimilarity Representation for Pattern Recognition - Foundations and Applications , 2005, Series in Machine Perception and Artificial Intelligence.

[6]  Andreas Stafylopatis,et al.  Self-Organizing Hidden Markov Model Map (SOHMMM) , 2013, Neural Networks.

[7]  Laurens van der Maaten,et al.  Learning Discriminative Fisher Kernels , 2011, ICML.

[8]  Maya R. Gupta,et al.  Similarity-based Classification: Concepts and Algorithms , 2009, J. Mach. Learn. Res..

[9]  Andrea Passerini,et al.  Kernel Methods for Structured Data , 2013, Handbook on Neural Information Processing.

[10]  Edwin R. Hancock,et al.  Spherical embeddings for non-Euclidean dissimilarities , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[11]  Liqing Zhang,et al.  Kernelization of Tensor-Based Models for Multiway Data Analysis: Processing of Multidimensional Structured Data , 2013, IEEE Signal Processing Magazine.

[12]  Prateek Jain,et al.  Supervised Learning with Similarity Functions , 2012, NIPS.

[13]  Edwin R. Hancock,et al.  Determining the Cause of Negative Dissimilarity Eigenvalues , 2011, CAIP.

[14]  Zhihua Zhang,et al.  Latent Wishart Processes for Relational Kernel Learning , 2009, AISTATS.

[15]  Alessandro Sperduti,et al.  Mining Structured Data , 2010, IEEE Computational Intelligence Magazine.

[16]  Minyoung Kim,et al.  Probabilistic Sequence Translation-Alignment Model for Time-Series Classification , 2014, IEEE Transactions on Knowledge and Data Engineering.

[17]  Robert Tibshirani,et al.  Spectral Regularization Algorithms for Learning Large Incomplete Matrices , 2010, J. Mach. Learn. Res..

[18]  X. Yao,et al.  Model-based kernel for efficient time series analysis , 2013, KDD.

[19]  Dan Gusfield,et al.  Algorithms on Strings, Trees, and Sequences - Computer Science and Computational Biology , 1997 .

[20]  Peter A. Flach,et al.  Proceedings of the 28th International Conference on Machine Learning , 2011 .

[21]  Bikash Kumar Dey,et al.  A Channel Coding Perspective of Collaborative Filtering , 2011, IEEE Transactions on Information Theory.

[22]  Barbara Hammer,et al.  Relevance learning in generative topographic mapping , 2011, Neurocomputing.

[23]  Volker Dürr,et al.  Learning Relevant Time Points for Time-Series Data in the Life Sciences , 2012, ICANN.

[24]  Elzbieta Pekalska,et al.  Kernel Discriminant Analysis for Positive Definite and Indefinite Kernels , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[25]  Minyoung Kim,et al.  Semi-supervised learning of hidden conditional random fields for time-series classification , 2013, Neurocomputing.

[26]  Alfredo Vellido,et al.  Advances in clustering and visualization of time series using GTM through time , 2008, Neural Networks.

[27]  Alessandro Sperduti,et al.  A Tree-Based Kernel for Graphs , 2012, SDM.

[28]  Pedro Antonio Gutiérrez,et al.  Support Vector Ordinal Regression using Privileged Information , 2014, ESANN.

[29]  Nicolas Gillis,et al.  Low-Rank Matrix Approximation with Weights or Missing Data Is NP-Hard , 2010, SIAM J. Matrix Anal. Appl..

[30]  Jayant Madhavan,et al.  Structured Data on the Web , 2009, 2010 12th International Asia-Pacific Web Conference.

[31]  Eyke Hüllermeier,et al.  Correlation-based embedding of pairwise score data , 2014, Neurocomputing.

[32]  Thomas Villmann,et al.  Utilization of Chemical Structure Information for Analysis of Spectra Composites , 2014, ESANN.

[33]  Michael Biehl,et al.  Segmented shape-symbolic time series representation , 2014, ESANN.

[34]  Marco Cuturi,et al.  Fast Global Alignment Kernels , 2011, ICML.

[35]  Cécile Amblard,et al.  Classification trees for time series , 2012, Pattern Recognit..

[36]  Emmanuel J. Candès,et al.  The Power of Convex Relaxation: Near-Optimal Matrix Completion , 2009, IEEE Transactions on Information Theory.

[37]  Nathan Halko,et al.  Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions , 2009, SIAM Rev..

[38]  R. Duin,et al.  The dissimilarity representation for pattern recognition , a tutorial , 2009 .

[39]  Maya R. Gupta,et al.  Learning kernels from indefinite similarities , 2009, ICML '09.

[40]  Thomas Villmann,et al.  Comparison of Cluster Algorithms for the Analysis of Text Data Using Kolmogorov Complexity , 2008, ICONIP.

[41]  Markus Hagenbuchner,et al.  Learning Nonsparse Kernels by Self-Organizing Maps for Structured Data , 2009, IEEE Transactions on Neural Networks.

[42]  Alessandro Sperduti,et al.  On the Efficient Classification of Data Structures by Neural Networks , 1997, IJCAI.

[43]  Christopher M. Bishop,et al.  Developments of the generative topographic mapping , 1998, Neurocomputing.

[44]  Chengqi Zhang,et al.  Nested Subtree Hash Kernels for Large-Scale Graph Classification over Streams , 2012, 2012 IEEE 12th International Conference on Data Mining.

[45]  Huanhuan Chen,et al.  Probabilistic Classification Vector Machines , 2009, IEEE Transactions on Neural Networks.

[46]  Heeyoul Choi Data visualization for asymmetric relations , 2014, Neurocomputing.

[47]  Ah Chung Tsoi,et al.  A self-organizing map for adaptive processing of structured data , 2003, IEEE Trans. Neural Networks.

[48]  Frank-Michael Schleif Proximity learning for non-standard big data , 2014, ESANN.

[49]  Eamonn J. Keogh,et al.  iSAX 2.0: Indexing and Mining One Billion Time Series , 2010, 2010 IEEE International Conference on Data Mining.

[50]  Christopher Bowles,et al.  Weighted tree kernels for sequence analysis , 2014, ESANN.

[51]  Mikhail Belkin,et al.  Laplacian Eigenmaps for Dimensionality Reduction and Data Representation , 2003, Neural Computation.

[52]  Davide Bacciu,et al.  An input-output hidden Markov model for tree transductions , 2013, Neurocomputing.

[53]  R. Knight,et al.  Advancing analytical algorithms and pipelines for billions of microbial sequences. , 2012, Current opinion in biotechnology.

[54]  Feiping Nie,et al.  Robust Matrix Completion via Joint Schatten p-Norm and lp-Norm Minimization , 2012, 2012 IEEE 12th International Conference on Data Mining.

[55]  James T. Kwok,et al.  Making Large-Scale Nyström Approximation Possible , 2010, ICML.

[56]  Leander Schietgat Graph-based data mining for biological applications , 2011, AI Commun..

[57]  Qiang Wu,et al.  Least square regression with indefinite kernels and coefficient regularization , 2011 .

[58]  Pierre Alquier,et al.  Bayesian Methods for Low-Rank Matrix Estimation: Short Survey and Theoretical Study , 2013, ALT.

[59]  Frank-Michael Schleif,et al.  Data Analysis of (Non-)Metric Proximities at Linear Costs , 2013, SIMBAD.