Finite time singularities for a class of generalized surface quasi-geostrophic equations

We propose and study a class of generalized surface quasi-geostrophic equations. We show that in the inviscid case certain radial solutions develop gradient blow-up in finite time. In the critical dissipative case, the equations are globally well-posed with arbitrary H 1 initial data.

[1]  A. Volberg,et al.  Global well-posedness for the critical 2D dissipative quasi-geostrophic equation , 2007 .

[2]  S. D. Gregorio A Partial Differential Equation Arising in a 1D Model for the 3D Vorticity Equation , 1996 .

[3]  J. Pedlosky Geophysical Fluid Dynamics , 1979 .

[4]  A. Córdoba,et al.  Formation of singularities for a transport equation with nonlocal velocity , 2005, 0706.1969.

[5]  Hongjie Dong Well-posedness for a transport equation with nonlocal velocity , 2008 .

[6]  P. Constantin,et al.  On the critical dissipative quasi-geostrophic equation , 2001 .

[7]  Norbert Schorghofer,et al.  Nonsingular surface quasi-geostrophic flow , 1998, math/9805027.

[8]  Dapeng Du,et al.  Global well-posedness and a decay estimate for the critical dissipative quasi-geostrophic equation in the whole space , 2007 .

[9]  Diego Cordoba,et al.  Nonexistence of simple hyperbolic blow-up for the quasi-geostrophic equation , 1998, math/9811184.

[10]  N. Ju Dissipative 2D quasi-geostrophic equation: local well-posednes, global regularity and similarity solutions , 2007 .

[11]  Peter Constantin,et al.  Global regularity for a modified critical dissipative quasi-geostrophic equation , 2008, 0803.1318.

[12]  A. Córdoba,et al.  Integral inequalities for the Hilbert transform applied to a nonlocal transport equation , 2006 .

[13]  Hongjie Dong,et al.  Spatial Analyticity of the Solutions to the Subcritical Dissipative Quasi-geostrophic Equations , 2008 .

[14]  Behavior of Solutions of Model Equations for Incompressible Fluid Flow , 1996 .

[15]  An inequality for Riesz transforms implying blow-up for some nonlinear and nonlocal transport equations , 2007 .

[16]  Andrew J. Majda,et al.  A two-dimensional model for quasigeostrophic flow: comparison with the two-dimensional Euler flow , 1996 .

[17]  Tosio Kato,et al.  Remarks on the breakdown of smooth solutions for the 3-D Euler equations , 1984 .

[18]  Hongjie Dong Higher regularity for the critical and super-critical dissipative quasi-geostrophic equations , 2007 .

[19]  S. Schochet Explicit solutions of the viscous model vorticity equation , 1986 .

[20]  Andrew J. Majda,et al.  Vorticity and the mathematical theory of incompressible fluid flow , 1986 .

[21]  Andrew J. Majda,et al.  A simple one-dimensional model for the three-dimensional vorticity equation , 1985 .

[22]  A. Córdoba,et al.  Finite time singularities in a 1D model of the quasi-geostrophic equation , 2005 .

[23]  Andrew J. Majda,et al.  Formation of strong fronts in the 2-D quasigeostrophic thermal active scalar , 1994 .

[24]  Andrew J. Majda,et al.  Vorticity and Incompressible Flow: Index , 2001 .

[25]  Michio Yamada,et al.  Inviscid and inviscid-limit behavior of a surface quasigeostrophic flow , 1997 .

[26]  T. Sakajo On global solutions for the Constantin–Lax–Majda equation with a generalized viscosity term , 2003 .