Automated Tracing of Neurites from Light Microscopy Stacks of Images

Automating the process of neural circuit reconstruction on a large-scale is one of the foremost challenges in the field of neuroscience. In this study we examine the methodology for circuit reconstruction from three-dimensional light microscopy (LM) stacks of images. We show how the minimal error-rate of an ideal reconstruction procedure depends on the density of labeled neurites, giving rise to the fundamental limitation of an LM based approach for neural circuit research. Circuit reconstruction procedures typically involve steps related to neuron labeling and imaging, and subsequent image pre-processing and tracing of neurites. In this study, we focus on the last step—detection of traces of neurites from already pre-processed stacks of images. Our automated tracing algorithm, implemented as part of the Neural Circuit Tracer software package, consists of the following main steps. First, image stack is filtered to enhance labeled neurites. Second, centerline of the neurites is detected and optimized. Finally, individual branches of the optimal trace are merged into trees based on a cost minimization approach. The cost function accounts for branch orientations, distances between their end-points, curvature of the merged structure, and its intensity. The algorithm is capable of connecting branches which appear broken due to imperfect labeling and can resolve situations where branches appear to be fused due the limited resolution of light microscopy. The Neural Circuit Tracer software is designed to automatically incorporate ImageJ plug-ins and functions written in MatLab and provides roughly a 10-fold increases in speed in comparison to manual tracing.

[1]  Eugene W. Myers,et al.  Automatic Neuron Tracing in Volumetric Microscopy Images with Anisotropic Path Searching , 2010, MICCAI.

[2]  Hong Shen,et al.  Rapid automated tracing and feature extraction from retinal fundus images using direct exploratory algorithms , 1999, IEEE Transactions on Information Technology in Biomedicine.

[3]  HighWire Press Philosophical Transactions of the Royal Society of London , 1781, The London Medical Journal.

[4]  Eric L. Miller,et al.  Automated Axon Tracking of 3D Confocal Laser Scanning Microscopy Images Using Guided Probabilistic Region Merging , 2007, Neuroinformatics.

[5]  Alejandro F. Frangi,et al.  3D MRA coronary axis determination using a minimum cost path approach , 2002, Magnetic resonance in medicine.

[6]  G. Shepherd,et al.  Transient and Persistent Dendritic Spines in the Neocortex In Vivo , 2005, Neuron.

[7]  D Marr,et al.  Theory of edge detection , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[8]  Kunal K. Ghosh,et al.  Advances in light microscopy for neuroscience. , 2009, Annual review of neuroscience.

[9]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[10]  Mathews Jacob,et al.  Design of steerable filters for feature detection using canny-like criteria , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  Pascal Fua,et al.  Steerable Features for Statistical 3D Dendrite Detection , 2009, MICCAI.

[12]  Giorgio A. Ascoli,et al.  The DIADEM Metric: Comparing Multiple Reconstructions of the Same Neuron , 2011, Neuroinformatics.

[13]  K. Harris,et al.  Ultrastructural Analysis of Hippocampal Neuropil from the Connectomics Perspective , 2010, Neuron.

[14]  Jeremy D. Schmahmann,et al.  A Proposal for a Coordinated Effort for the Determination of Brainwide Neuroanatomical Connectivity in Model Organisms at a Mesoscopic Scale , 2009, PLoS Comput. Biol..

[15]  Christophe Lenglet,et al.  ODF reconstruction in q-ball imaging with solid angle consideration , 2009, 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[16]  Jürgen Weese,et al.  Multi-scale line segmentation with automatic estimation of width, contrast and tangential direction in 2D and 3D medical images , 1997, CVRMed.

[17]  Andrew J. Davison,et al.  Active Matching , 2008, ECCV.

[18]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[19]  Christian Van den Broeck,et al.  Statistical Mechanics of Learning , 2001 .

[20]  D. Chklovskii,et al.  Wiring optimization can relate neuronal structure and function. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[21]  Edward H. Adelson,et al.  The Design and Use of Steerable Filters , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  Olaf Sporns,et al.  The Human Connectome: A Structural Description of the Human Brain , 2005, PLoS Comput. Biol..

[23]  D. Chklovskii,et al.  Geometry and Structural Plasticity of Synaptic Connectivity , 2002, Neuron.

[24]  R. W. Draft,et al.  Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system , 2007, Nature.

[25]  Rangasami L. Kashyap,et al.  Building Skeleton Models via 3-D Medial Surface/Axis Thinning Algorithms , 1994, CVGIP Graph. Model. Image Process..

[26]  L. Luo,et al.  Comprehensive Maps of Drosophila Higher Olfactory Centers: Spatially Segregated Fruit and Pheromone Representation , 2007, Cell.

[27]  Deniz Erdogmus,et al.  Piecewise linear cylinder models for 3-dimensional axon segmentation in Brainbow imagery , 2010, 2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[28]  Alex S. Ferecskó,et al.  Local Potential Connectivity in Cat Primary Visual Cortex , 2008 .

[29]  Arthur W. Toga,et al.  Three-dimensional skeleton and centerline generation based on an approximate minimum distance field , 1998, The Visual Computer.

[30]  R. Yuste,et al.  Morphological changes in dendritic spines associated with long-term synaptic plasticity. , 2001, Annual review of neuroscience.

[31]  Ju Lu,et al.  The Interscutularis Muscle Connectome , 2009, PLoS biology.

[32]  Alex M. Andrew,et al.  Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science (2nd edition) , 2000 .

[33]  W. Brent Lindquist,et al.  Automated Algorithms for Multiscale Morphometry of Neuronal Dendrites , 2004, Neural Computation.

[34]  J. van Pelt,et al.  Analysis of tubular structures in three-dimensional confocal images , 2002, Network.

[35]  Luc Van Gool,et al.  What's going on? Discovering spatio-temporal dependencies in dynamic scenes , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[36]  J. Livet,et al.  A technicolour approach to the connectome , 2008, Nature Reviews Neuroscience.

[37]  Alejandro F. Frangi,et al.  Muliscale Vessel Enhancement Filtering , 1998, MICCAI.

[38]  Erik Meijering,et al.  Neuron tracing in perspective , 2010, Cytometry. Part A : the journal of the International Society for Analytical Cytology.

[39]  K. Svoboda,et al.  Cell Type-Specific Structural Plasticity of Axonal Branches and Boutons in the Adult Neocortex , 2006, Neuron.

[40]  Armen Stepanyants,et al.  Detection of the optimal neuron traces in confocal microscopy images , 2009, Journal of Neuroscience Methods.

[41]  Pascal Fua,et al.  Automated Delineation of Dendritic Networks in Noisy Image Stacks , 2008, ECCV.

[42]  Ju Lu,et al.  The DIADEM Data Sets: Representative Light Microscopy Images of Neuronal Morphology to Advance Automation of Digital Reconstructions , 2011, Neuroinformatics.

[43]  N. Kasthuri,et al.  Long-term dendritic spine stability in the adult cortex , 2002, Nature.

[44]  W. Denk,et al.  Serial Block-Face Scanning Electron Microscopy to Reconstruct Three-Dimensional Tissue Nanostructure , 2004, PLoS biology.

[45]  D. Chklovskii,et al.  Neurogeometry and potential synaptic connectivity , 2005, Trends in Neurosciences.

[46]  John C. Russ,et al.  The Image Processing Handbook , 2016, Microscopy and Microanalysis.

[47]  Arthur W. Toga,et al.  Efficient Skeletonization of Volumetric Objects , 1999, IEEE Trans. Vis. Comput. Graph..

[48]  N. Kasthuri,et al.  Automating the Collection of Ultrathin Serial Sections for Large Volume TEM Reconstructions , 2006, Microscopy and Microanalysis.

[49]  D. Chklovskii,et al.  Class-Specific Features of Neuronal Wiring , 2004, Neuron.

[50]  K. Svoboda,et al.  Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex , 2002, Nature.

[51]  S. Brenner,et al.  The structure of the nervous system of the nematode Caenorhabditis elegans. , 1986, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[52]  Khalid A. Al-Kofahi,et al.  Rapid automated three-dimensional tracing of neurons from confocal image stacks , 2002, IEEE Transactions on Information Technology in Biomedicine.

[53]  Jocelyne Troccaz,et al.  CVRMed-MRCAS'97 , 1997, Lecture Notes in Computer Science.

[54]  R. C Cannon,et al.  An on-line archive of reconstructed hippocampal neurons , 1998, Journal of Neuroscience Methods.

[55]  William M. Wells,et al.  Medical Image Computing and Computer-Assisted Intervention — MICCAI’98 , 1998, Lecture Notes in Computer Science.

[56]  Guido Gerig,et al.  Three-dimensional multi-scale line filter for segmentation and visualization of curvilinear structures in medical images , 1998, Medical Image Anal..

[57]  Prof. Dr. Dr. Valentino Braitenberg,et al.  Cortex: Statistics and Geometry of Neuronal Connectivity , 1998, Springer Berlin Heidelberg.

[58]  Deniz Erdogmus,et al.  Principal curve tracing , 2010, ESANN.

[59]  Tarec Fares,et al.  Structural Plasticity of Circuits in Cortical Neuropil , 2008, The Journal of Neuroscience.

[60]  Laurent D. Cohen,et al.  Fast extraction of minimal paths in 3D images and applications to virtual endoscopy , 2001, Medical Image Anal..

[61]  Attila Kuba,et al.  A 3D 6-subiteration thinning algorithm for extracting medial lines , 1998, Pattern Recognit. Lett..

[62]  Pascal Fua,et al.  Delineating trees in noisy 2D images and 3D image-stacks , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[63]  Alex S. Ferecskó,et al.  The fractions of short- and long-range connections in the visual cortex , 2009, Proceedings of the National Academy of Sciences.

[64]  Kevin L. Briggman,et al.  Towards neural circuit reconstruction with volume electron microscopy techniques , 2006, Current Opinion in Neurobiology.

[65]  Xiaobo Zhou,et al.  DYNAMIC LOCAL TRACING FOR 3D AXON CURVILINEAR STRUCTURE DETECTION FROM MICROSCOPIC IMAGE STACK , 2007, 2007 4th IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[66]  Stephen T. C. Wong,et al.  Automated Axon Tracking of 3D Confocal Laser Scanning Microscopy Images Using Guided Probabilistic Region Merging , 2009, Neuroinformatics.

[67]  J. Sanes,et al.  Ome sweet ome: what can the genome tell us about the connectome? , 2008, Current Opinion in Neurobiology.

[68]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.