A refining mechanism of primary Al 3 Ti intermetallic particles by ultrasonic treatment in the liquid state

The authors acknowledge the financial support from UK government’s Engineering and Physical Science Research Council (EPSRC) for the Ultra-Cast project [Grant EP/L019884/1, EP/L019825/1, and EP/L019965/1].

[1]  A. G. Quarrell Solidification , 1965, Nature.

[2]  P. Villars,et al.  Atlas of Crystal Structure Types for Intermetallic Phases , 1991 .

[3]  D. Qiu,et al.  Understanding the Co-Poisoning Effect of Zr and Ti on the Grain Refinement of Cast Aluminum Alloys , 2010 .

[4]  Marcel H. F. Sluiter,et al.  On the mechanism of grain refinement in Al-Zr-Ti alloys , 2011 .

[5]  W. E. Lee,et al.  Structural and electron diffraction data for sapphire (α-al2o3) , 1985 .

[6]  G. Meyrick,et al.  Phase Transformations in Metals and Alloys , 1973 .

[7]  Jana Fuhrmann,et al.  High Intensity Ultrasonics Theory And Industrial Applications , 2016 .

[8]  Pierre Villars,et al.  Pearson's handbook of crystallographic data for intermetallic phases , 1985 .

[9]  L. Katgerman,et al.  On the mechanism of the formation of primary intermetallics under ultrasonic melt treatment in an Al-Zr-Ti alloy , 2012 .

[10]  D. Shu,et al.  Influence of high-intensity ultrasound on grain refining performance of Al–5Ti–1B master alloy on aluminium , 2005 .

[11]  D. Eskin,et al.  Production of natural and synthesized aluminum-based composite materials with the aid of ultrasonic (cavitation) treatment of the melt. , 2003, Ultrasonics sonochemistry.

[12]  Liming Lu,et al.  The role of oxides in the formation of primary iron intermetallics in an Al-11.6Si-0.37Mg alloy , 2005 .

[13]  D. StJohn,et al.  The effect of solute on ultrasonic grain refinement of magnesium alloys , 2010 .

[14]  B. L. Bramfitt The effect of carbide and nitride additions on the heterogeneous nucleation behavior of liquid iron , 1970, Metallurgical and Materials Transactions B.

[15]  Mats Johnson,et al.  Thermal Expansion of Al and TiB2 in the Temperature Range 300 to 900 K and Calculated Lattice Fit at the Melting Temperature for Al , 1998 .

[16]  L. Gránásy,et al.  Shear enhanced heterogeneous nucleation in some Mg- and Al-alloys , 2009 .

[17]  J. Hunt,et al.  Nucleation of Solid in an Undercooled Liquid by Cavitation , 1966 .

[18]  M. Qian,et al.  Crystallography of grain refinement in Mg–Al based alloys , 2005 .

[19]  D. Eskin,et al.  Effect of ultrasonic melt treatment on the refinement of primary Al3Ti intermetallic in an Al–0.4Ti alloy , 2016 .

[20]  Mingxing Zhang,et al.  Edge-to-edge matching and its applications: Part II. Application to Mg–Al, Mg–Y and Mg–Mn alloys , 2005 .

[21]  Laurens Katgerman,et al.  Influence of ultrasonic melt treatment on the formation of primary intermetallics and related grain refinement in aluminum alloys , 2011, Journal of Materials Science.

[22]  D. Qiu,et al.  Grain refinement by AlN particles in Mg-Al based alloys , 2009 .

[23]  M. Qian,et al.  High-intensity ultrasonic grain refinement of magnesium alloys: role of solute , 2009 .

[24]  J. Christian CHAPTER 14 – Solidification and Melting , 2002 .

[25]  D. Qiu,et al.  Crystallography of recently developed grain refiners for Mg–Al alloys , 2007 .

[26]  G. Jones,et al.  Factors affecting the grain-refinement of aluminum using titanium and boron additives , 1976 .

[27]  P. Prangnell,et al.  The effect of cooling rate on the morphology of primary Al3Sc intermetallic particles in Al–Sc alloys , 2001 .

[28]  D. Brandon,et al.  Metastable alumina polymorphs : Crystal structures and transition sequences , 2005 .

[29]  G. Éskin Broad prospects for commercial application of the ultrasonic (cavitation) melt treatment of light alloys. , 2001, Ultrasonics sonochemistry.

[30]  M. Easton,et al.  Crystallographic study of grain refinement in aluminum alloys using the edge-to-edge matching model , 2005 .

[31]  G. Purdy,et al.  O-lattice analyses of interfacial misfit. I: General considerations , 1993 .

[32]  M. Qian,et al.  Ultrasonic refinement of magnesium by cavitation: Clarifying the role of wall crystals , 2009 .

[33]  Xiaochun Li,et al.  Study on bulk aluminum matrix nano-composite fabricated by ultrasonic dispersion of nano-sized SiC particles in molten aluminum alloy , 2004 .

[34]  Patrick M. Kelly,et al.  Edge-to-edge matching and its applications: Part I. Application to the simple HCP/BCC system , 2005 .

[35]  Z. Fan,et al.  Oxidation of Aluminium Alloy Melts and Inoculation by Oxide Particles , 2012, Transactions of the Indian Institute of Metals.

[36]  R. Varin Intermetallic-reinforced light-metal matrix in-situ composites , 2002 .

[37]  D. Stefanescu Fundamentals of Solidification , 2004 .

[38]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[39]  G. Purdy,et al.  O-lattice analyses of interfacial misfit. II. Systems containing invariant lines , 1993 .

[40]  Feng Chen,et al.  Preparation of fine particulate reinforced metal matrix composites by high intensity ultrasonic treatment , 1995 .

[41]  G. Eskin Ultrasonic Treatment of Light Alloy Melts , 1998 .

[42]  Kenneth S Suslick,et al.  Sonocrystallization and sonofragmentation. , 2014, Ultrasonics sonochemistry.

[43]  D. Qiu,et al.  The grain refining mechanism of cast zinc through silver inoculation , 2014 .

[44]  D. Qiu,et al.  A new approach to designing a grain refiner for Mg casting alloys and its use in Mg–Y-based alloys , 2009 .

[45]  Zhilin Liu,et al.  Revisiting the role of peritectics in grain refinement of Al alloys , 2013 .

[46]  M. L Kronberg,et al.  Plastic deformation of single crystals of sapphire: Basal slip and twinning , 1957 .

[47]  Dmitry G. Eskin,et al.  Criteria of Grain Refinement Induced by Ultrasonic Melt Treatment of Aluminum Alloys Containing Zr and Ti , 2010 .

[48]  Sie Chin Tjong,et al.  Microstructural and mechanical characteristics of in situ metal matrix composites , 2000 .