Hidden attractors, singularly degenerate heteroclinic orbits, multistability and physical realization of a new 6D hyperchaotic system

Abstract This paper reports a sequential design of linearly controlling a three-dimensional (3D) quadratic system to a simple six-dimensional hyperchaotic system with complex dynamics. By adding three linear dynamical controllers, the resulting 6D system has no equilibrium and a hidden attractor, which has four positive Lyapunov exponents (LEs). This paper focuses on the 6D system, to reveal its unusual dynamics such as infinitely many singularly degenerate heteroclinic cycles and bifurcations from such singular orbits to hidden hyperchaotic attractors. Detailed numerical investigations are carried out, including bifurcation diagram, LE spectrum and phase portrait. Furthermore, the system has multistability corresponding to three types of equilibria, including no equilibrium and infinite non-isolated equilibria. In particular, we find that at least seven different attractors coexist when the system has one equilibrium line. Finally, this 6D hyperchaotic system is verified by 0–1 test and a circuit.

[1]  Julien Clinton Sprott,et al.  Coexisting Hidden Attractors in a 4-D Simplified Lorenz System , 2014, Int. J. Bifurc. Chaos.

[2]  Hiroshi Kokubu,et al.  Existence of a Singularly Degenerate Heteroclinic Cycle in the Lorenz System and Its Dynamical Consequences: Part I , 2004 .

[3]  Sen Zhang,et al.  Generating one to four-wing hidden attractors in a novel 4D no-equilibrium chaotic system with extreme multistability. , 2018, Chaos.

[4]  Zhouchao Wei,et al.  Hidden Hyperchaotic Attractors in a Modified Lorenz-Stenflo System with Only One Stable Equilibrium , 2014, Int. J. Bifurc. Chaos.

[5]  Qigui Yang,et al.  A New 7D Hyperchaotic System with Five Positive Lyapunov Exponents Coined , 2018, Int. J. Bifurc. Chaos.

[6]  Guillermo Fernández-Anaya,et al.  Dynamic Analysis of a Lü Model in Six Dimensions and Its Projections , 2017 .

[7]  O. Rössler An equation for hyperchaos , 1979 .

[8]  Anaclet Fomethe,et al.  A novel memristive 6D hyperchaotic autonomous system with hidden extreme multistability , 2019, Chaos, Solitons & Fractals.

[9]  Xingyuan Wang,et al.  Spatiotemporal chaos in mixed linear–nonlinear coupled logistic map lattice , 2014 .

[10]  A. Njah,et al.  A 5D hyperchaotic Sprott B system with coexisting hidden attractors , 2016 .

[11]  刘璇,et al.  The 0-1 test algorithm for chaos and its applications , 2010 .

[12]  Qigui Yang,et al.  Complex Dynamics in the Unified Lorenz-Type System , 2014, Int. J. Bifurc. Chaos.

[13]  Georg A. Gottwald,et al.  A new test for chaos in deterministic systems , 2004, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[14]  Xiangjun Wu,et al.  A new color image cryptosystem via hyperchaos synchronization , 2014, Commun. Nonlinear Sci. Numer. Simul..

[15]  Jaume Llibre,et al.  On the global dynamics of the Rabinovich system , 2008 .

[16]  Yongjian Liu,et al.  Dynamics at infinity and the existence of singularly degenerate heteroclinic cycles in the conjugate Lorenz-type system , 2012 .

[17]  Dawei Wang,et al.  A novel lossless color image encryption scheme using 2 D DWT and 6 D hyperchaotic system , 2016 .

[18]  Haijun Wang,et al.  A novel hyperchaotic system with infinitely many heteroclinic orbits coined , 2018 .

[19]  Zhang Huaguang,et al.  A new hyperchaotic system and its circuit implementation , 2010 .

[20]  Qigui Yang,et al.  A new Lorenz-type hyperchaotic system with a curve of equilibria , 2015, Math. Comput. Simul..

[21]  A. Wolf,et al.  Determining Lyapunov exponents from a time series , 1985 .

[22]  Marcelo Messias,et al.  Dynamics at infinity and the existence of singularly degenerate heteroclinic cycles in the Lorenz system , 2009 .

[23]  Sen Zhang,et al.  A Novel Four-Dimensional No-Equilibrium Hyper-Chaotic System With Grid Multiwing Hyper-Chaotic Hidden Attractors , 2018, Journal of Computational and Nonlinear Dynamics.

[24]  Qigui Yang,et al.  Dynamical analysis of the generalized Sprott C system with only two stable equilibria , 2012 .

[25]  Qigui Yang,et al.  A New 6D Hyperchaotic System with Four Positive Lyapunov Exponents Coined , 2015, Int. J. Bifurc. Chaos.

[26]  Huagan Wu,et al.  Complex transient dynamics of hidden attractors in a simple 4D system , 2015 .

[27]  Haijun Wang,et al.  New dynamics coined in a 4-D quadratic autonomous hyper-chaotic system , 2019, Appl. Math. Comput..

[28]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[29]  Wei Zhang,et al.  Hidden hyperchaos and electronic circuit application in a 5D self-exciting homopolar disc dynamo. , 2017, Chaos.

[30]  Robert A. Van Gorder,et al.  Hyperchaos from a Model of Coupled Stratosphere-Troposphere Dynamics , 2017, Int. J. Bifurc. Chaos.

[31]  Jiaopeng Yang,et al.  A Novel Simple Hyperchaotic System with Two Coexisting Attractors , 2019, Int. J. Bifurc. Chaos.

[32]  Sundarapandian Vaidyanathan,et al.  A 5-D hyperchaotic Rikitake dynamo system with hidden attractors , 2015 .

[33]  G. Leonov,et al.  Hidden attractors in dynamical systems , 2016 .

[34]  Haijun Wang,et al.  On singular orbits and a given conjecture for a 3D Lorenz-like system , 2015 .

[35]  Rongrong Wang,et al.  A new finding of the existence of hidden hyperchaotic attractors with no equilibria , 2014, Math. Comput. Simul..

[36]  Kehui Sun,et al.  Dynamics and synchronization of conformable fractional-order hyperchaotic systems using the Homotopy analysis method , 2019, Commun. Nonlinear Sci. Numer. Simul..

[37]  Kjetil Wormnes,et al.  Application of the 0-1 Test for Chaos to Experimental Data , 2007, SIAM J. Appl. Dyn. Syst..

[38]  Qigui Yang,et al.  Hidden Hyperchaotic Attractors in a New 5D System Based on Chaotic System with Two Stable Node-Foci , 2019, Int. J. Bifurc. Chaos.

[39]  M. Yao,et al.  Study of hidden attractors, multiple limit cycles from Hopf bifurcation and boundedness of motion in the generalized hyperchaotic Rabinovich system , 2015 .

[40]  Guanrong Chen,et al.  An Unusual 3D Autonomous Quadratic Chaotic System with Two Stable Node-Foci , 2010, Int. J. Bifurc. Chaos.

[41]  Caibin Zeng,et al.  Chaos detection and parameter identification in fractional-order chaotic systems with delay , 2013 .

[42]  Qigui Yang,et al.  Chaotic attractors of the Conjugate Lorenz-Type System , 2007, Int. J. Bifurc. Chaos.

[43]  S. Wiggins Introduction to Applied Nonlinear Dynamical Systems and Chaos , 1989 .